

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2009

3895-8/7895-8/MS/R/09J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

www.mymathscloud.com

Advanced GCE Mathematics (MEI) (7895) Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
4751 (C1) Introduction to Advanced Mathematics	1
4752 (C2) Concepts for Advanced Mathematics	6
4753 (C3) Methods for Advanced Mathematics	9
4754 (C4) Applications of Advanced Mathematics	13
4755 (FP1) Further Concepts for Advanced Mathematics	18
4756 (FP2) Further Methods for Advanced Mathematics	24
4758 Differential Equations	29
4761 Mechanics 1	33
4762 Mechanics 2	38
4763 Mechanics 3	43
4766 Statistics 1	47
4767 Statistics 2	53
4768 Statistics 3	57
4771 Decision Mathematics 1	61
4776 Numerical Methods	65
Grade Thresholds	67

January 20 Rathscloud.com 4751 (C1) Introduction to Advanced Mathematics

Sect	tion A			
1	(i) 0.125 or 1/8 (ii) 1	1 1	as final answer	2
2	y = 5x - 4 www	3	M2 for $\frac{y-11}{-9-11} = \frac{x-3}{-1-3}$ o.e. or M1 for grad $= \frac{11-(-9)}{3-(-1)}$ or 5 eg in y = 5x + k and M1 for $y - 11 =$ their $m(x - 3)$ o.e. or subst (3, 11) or $(-1, -9)$ in y = their $mx + c$ or M1 for $y = kx - 4$ (eg may be found by drawing)	3
3	x > 9/6 o.e. or $9/6 < x$ o.e. www isw	3	M2 for $9 < 6x$ or M1 for $-6x < -9$ or $k < 6x$ or $9 < kx$ or $7 + 2 < 5x + x$ [condone \leq for Ms]; if 0, allow SC1 for 9/6 o.e found	3
4	a = -5 www	3	M1 for $f(2) = 0$ used and M1 for $10 + 2a = 0$ or better long division used: M1 for reaching $(8 + a)x - 6$ in working and M1 for $8 + a = 3$ equating coeffts method: M2 for obtaining $x^3 + 2x^2 + 4x + 3$ as other factor	3
5	(i) 4[x ³] (ii) 84[x ²] www	2 3	ignore any other terms in expansion M1 for $-3[x^3]$ and $7[x^3]$ soi; M1 for 7×6 or 21 or for Pascal's	
			M1 for $\frac{7 \times 6}{2}$ or 21 or for Pascal's triangle seen with 1 7 21 row and M1 for 2 ² or 4 or $\{2x\}^2$	5

Mark Scheme

4751	Mar	·k Sch	eme January 2	N. M.	
6	1/5 or 0.2 o.e. www	3	M1 for $3x + 1 = 2x \times 4$ and M1 for $5x = 1$ o.e. M1 for $1.5 + \frac{1}{2x} = 4$ and M1 for $\frac{1}{2x} = 2.5$ o.e.	3	COM
7	(i) $5^{3.5}$ or $k = 3.5$ or 7/2 o.e. (ii) $16a^6b^{10}$	2 2	M1 for 125 = 5 ³ or $\sqrt{5} = 5^{\frac{1}{2}}$ SC1 for $5^{\frac{3}{2}}$ o.e. as answer without working M1 for two 'terms' correct and multiplied; mark final answer only	4	
8	$b^{2} - 4ac$ soi $k^{2} - 4 \times 2 \times 18 < 0$ o.e. -12 < k < 12	M1 M1 A2	allow in quadratic formula or clearly looking for perfect square condone \leq ; or M1 for 12 identified as boundary may be two separate inequalities; A1 for \leq used or for one 'end' correct if two separate correct inequalities seen, isw for then wrongly combining them into one statement; condone <i>b</i> instead of <i>k</i> ; if no working, SC2 for <i>k</i> < 12 and SC2 for <i>k</i> > -12 (ie SC2 for each 'end' correct)	4	
9	y + 5 = xy + 2x y - xy = 2x - 5 oe or ft y (1 - x) = 2x - 5 oe or ft $[y =]\frac{2x - 5}{1 - x} \text{ oe or ft as final answer}$	M1 M1 M1 M1	for expansion for collecting terms for taking out <i>y</i> factor; dep on <i>xy</i> term for division and no wrong work after ft earlier errors for equivalent steps if error does not simplify problem	4	
10	(i) $9\sqrt{3}$ (ii) $6 + 2\sqrt{2}$ www	2 3	M1 for $5\sqrt{3}$ or $4\sqrt{3}$ seen M1 for attempt to multiply num. and denom. by $3 + \sqrt{2}$ and M1 for denom. 7 or $9 - 2$ soi from denom. mult by $3 + \sqrt{2}$	5 20]

4751	I	Mark S	Schem	e January 2	y.mymaa	ATA ASSIS
Sect	ion B					SCIOUX
11	i	C, mid pt of AB = $\left(\frac{11+(-1)}{2}, \frac{4}{2}\right)$ = (5, 2)	B1	evidence of method required – may be on diagram, showing equal steps, or start at A or B and go half the difference towards the other		s.com
		$[AB^{2} =] 12^{2} + 4^{2} [= 160]$ oe or $[CB^{2} =] 6^{2} + 2^{2} [=40]$ oe with AC	B1	or square root of these; accept unsimplified		
		quote of $(x - a)^2 + (y - b)^2 = r^2$ o.e with different letters	B1	or (5, 2) clearly identified as centre and $\sqrt{40}$ as <i>r</i> (or 40 as r^2) www or quote of <i>gfc</i> formula and finding c = -11		
		completion (ans given)	B1	dependent on centre (or midpt) and radius (or radius ²) found independently and correctly	4	
	ii	correct subst of $x = 0$ in circle eqn	M1			
		sol $(y-2)^2 = 15 \text{ or } y^2 - 4y - 11 [= 0]$ $y-2 = \pm \sqrt{15} \text{ or ft}$	M1 M1	condone one error or use of quad formula (condone one error in formula); ft only for 3 term quadratic in y		
		$[y =]2 \pm \sqrt{15}$ cao	A1	if $y = 0$ subst, allow SC1 for (11, 0) found alt method: M1 for y values are $2 \pm a$ M1 for $a^2 + 5^2 = 40$ soi M1 for $a^2 = 40 - 5^2$ soi A1 for $[y =]2 \pm \sqrt{15}$ cao	4	
	iii	grad AB = $\frac{4}{11 - (-1)}$ or 1/3 o.e.	M1	or grad AC (or BC)		
		so grad tgt = -3 eqn of tgt is $y - 4 = -3$ ($x - 11$) y = -3x + 37 or $3x + y = 37(0, 37) and (37/3, 0) o.e. ft isw$	M1 M1 A1 B2	or ft -1/their gradient of AB or subst (11, 4) in $y = -3x + c$ or ft (no ft for their grad AB used) accept other simplified versions B1 each, ft their tgt for grad $\neq 1$ or 1/3; accept $x = 0$, $y = 37$ etc NB alt method: intercepts may be		
				found first by proportion then used to find eqn	6	14

4751	1	Marl	k Schem	ne January 2	v.nymai	Mu Asins Inscioud.com
12	i	$3x^{2} + 6x + 10 = 2 - 4x$ $3x^{2} + 10x + 8 [= 0]$	M1 M1	for subst for x or y or subtraction attempted or $3y^2 - 52y + 220$ [=0]; for rearranging to zero (condone one error)		Y.COM
		(3x + 4)(x + 2) [=0] x = -2 or $-4/3$ o.e. y = 10 or $22/3$ o.e.	M1 A1 A1	or $(3y - 22)(y - 10)$; for sensible attempt at factorising or formula or completing square or A1 for each of (-2, 10) and (-4/3, 22/3) o.e.	5	
	ii	$3(x+1)^2 + 7$	4	1 for $a = 3$, 1 for $b = 1$, 2 for $c = 7$ or M1 for $10 - 3 \times$ their b^2 soi or for 7/3 or for $10/3$ – their b^2 soi	4	
	iii	min at $y = 7$ or ft from (ii) for positive c (ft for (ii) only if in correct form)	B2	may be obtained from (ii) or from good symmetrical graph or identified from table of values showing symmetry condone error in x value in stated min ft from (iii) [getting confused with 3 factor] B1 if say turning pt at $y = 7$ or ft without identifying min <u>or</u> M1 for min at $x = -1$ [e.g. may start again and use calculus to obtain $x = -1$] or min when $(x + 1)^{[2]} = 0$; and A1 for showing y positive at min <u>or</u> M1 for showing discriminant neg. so no real roots and A1 for showing above axis not below eg positive x^2 term or goes though (0, 10) <u>or</u> M1 for stating bracket squared must be positive [or zero] and A1 for		
				saying other term is positive	2	11

				m	MAN ANS	
4751	1	Mark S	Schem	e January 2	20 Athscio	ens -
13	i	any correct <i>y</i> value calculated from quadratic seen or implied by plots	B1	for $x \neq 0$ or 1; may be for neg x or eg min.at (2.5, -1.25)		J.COM
		(0, 5)(1, 1)(2, -1)(3, -1)(4,1) and (5,5) plotted	P2	tol 1 mm; P1 for 4 correct [including $(2.5, -1.25)$ if plotted]; plots may be implied by curve within 1 mm of correct position		
		good quality smooth parabola within 1mm of their points	C1	allow for correct points only		
	ii	$x^2 - 5x + 5 = \frac{1}{2}$	M1	[accept graph on graph paper, not insert]	4	
		$x^{2}-5x+5 = \frac{1}{x}$ $x^{3}-5x^{2}+5x = 1 \text{ and completion}$ to given answer	M1		2	
	iii	divn of $x^3 - 5x^2 + 5x - 1$ by $x - 1$ as far as $x^3 - x^2$ used in working	M1	or inspection eg $(x - 1)(x^2+1)$ or equating coeffts with two correct coeffts found		
		$x^2 - 4x + 1$ obtained	A1	coents round		
		use of $b^2 - 4ac$ or formula with quadratic factor	M1	or $(x-2)^2 = 3$; may be implied by correct roots or $\sqrt{12}$ obtained		
		$\sqrt{12}$ obtained and comment re shows other roots (real and) irrational	A2	[A1 for $\sqrt{12}$ and A1 for comment]		
		or for $2 \pm \sqrt{3}$ or $\frac{4 \pm \sqrt{12}}{2}$ obtained isw		NB A2 is available only for correct quadratic factor used; if wrong factor used, allow A1 ft for obtaining two irrational roots or for their discriminant and comment re		
				irrational [no ft if their discriminant is negative]	5 11	

January 20. Mainscloud.com 4752 (C2) Concepts for Advanced Mathematics

Section A

1	$4x^5$	1		
	$-12x^{-\frac{1}{2}}$		M1 for other $kx^{\frac{1}{2}}$	
		2	M1 for other kx^2	
	+ c	1		4
2	95.25, 95.3 or 95	4	M3	
			$\frac{1}{2} \times 5 \times (4.3+0+2[4.9+4.6+3.9+2.3+1.2])$ M2 with 1 error, M1 with 2 errors.	
			Or M3 for 6 correct trapezia.	4
3	1.45 o.e.	2	M1 for $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$ oe	2
4	105 and 165	3	B1 for one of these or M1 for $2x = 210$	-
4		5	or 330	3
5	(i) graph along $y = 2$ with V at (3,2) (4,1) & (5,2)	2	M1 for correct V, or for f(x+2)	
	(ii) graph along $y = 6$ with V at (1,6) (2,3) & (3,6)	2	B1 for (2,k) with all other elements correct	4
6	(i) 54.5	2	B1 for $d = 2.5$	т
Ũ		_		
	(ii) Correct use of sum of AP	M1	or M2 for correct formula for S_{30} with	
	formula with $n = 50, 20, 19$ or 21		their d	
	with their d and $a = 7$ eg S ₅₀ =		M1 if one slip	
	$3412.5, S_{20} = 615$			
	Their $S_{50} - S_{20}$ dep on use of ap	M1		
	formula			
	2797.5 c.a.o.	A1		5
7	$8x - x^{-2}$ o.e.	2	B1 each term	
	their $\frac{dy}{dx} = 0$	N/1		_
		M1 DM1	s.o.i. s.o.i.	5
	correct step	A1	5.0.1.	
	$x = \frac{1}{2}$ c.a.o.	111		
8	(i) 48	1		
	geometric, or GP	1		
	(ii) mention of $ r < 1$ condition o.e.	1	M1 for $\frac{192}{1}$	
	S = 128	2	M1 for $\frac{192}{1\frac{1}{2}}$	5
		1	-	
9	(i) 1	1		
	(ii) (A) $3.5 \log_a x$	2	M1 for correct use of 1 st or 3 rd law	
	(ii) (B) $-\log_a x$	1		4

Section B

475	2	Mark S	cheme	່ນນັ້ນ January 2	N. M. M. H.S. COULD COM
	tion B		Unonie	•,	inscloud
10	i	7 - 2x	M1		T COM
10	1	y = 2x x = 2, gradient = 3 x = 2, y = 4 y - their 4 = their grad (x - 2)	A1 B1 M1	differentiation must be used	
		subst $y = 0$ in their linear eqn	M1	or use of $y =$ their $mx + c$ and subst (2, their 4), dependent on diffn seen	6
	ii	completion to $x = \frac{2}{3}$ (ans given) f(1) = 0 or factorising to (x - 1)(6 - x) or $(x - 1)(x - 6)$	A1 1	or using quadratic formula correctly to obtain $x = 1$	
		6 www	1		2
	iii	$\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$	M1	for two terms correct; ignore $+c$	
		value at 2 – value at 1 $2\frac{1}{6}$ or 2.16 to 2.17	M1 A1	ft attempt at integration only	
		$\frac{1}{2} \times \frac{4}{3} \times 4$ – their integral	M1		
		0.5 o.e.	A1		5
11	i(A)	150 (cm) or 1.5 m	2	M1 for 2.5×60 or 2.5×0.6 or for 1.5 with no units	2
	i(B)	$\frac{1}{2} \times 60^{2} \times 2.5 \text{ or } 4500$ $\frac{1}{2} \times 140^{2} \times 2.5 \text{ or } 24500$ subtraction of these	M1 M1 DM1	or equivalents in m ²	
		20 000 (cm ²) isw	A1	or 2 m ²	4
	ii(A)	attempt at use of cosine rule	M1	condone 1 error in substitution	
		$\cos \text{EFP} = \frac{3.5^2 + 2.8^2 - 1.6^2}{2 \times 2.8 \times 3.5} \text{ o.e.}$ 26.5 to 26.65 or 27	M1 A1		3
	ii(B)	2.8 sin (their EFP) o.e. 1.2 to 1.3 [m]	M1 A1		2

4752	2	Mark Sc	1		January 20	MM ABUS CON
12	i	$\log a + \log (b^t)$ www	B1	condone omission of base		COM
		clear use of $\log(b^t) = t \log b \operatorname{dep}$	B1	throughout question	2	
	ii	(2.398), 2.477, 2.556, 2.643, 2.724 points plotted correctly f.t. ruled line of best fit f.t.	T1 P1 1	On correct square	3	
	iii	$\log a = 2.31$ to 2.33 a = 204 to 214	M1 A1	ft their intercept		
		log b = 0.08 approx	M1	ft their gradient		
		b = 1.195 to 1.215	A1		4	
	iv	eg £210 million dep	1	their £ <i>a</i> million	1	
	v	$\frac{\log 1000 - \text{their intercept}}{\approx} \approx \frac{3 - 2.32}{2}$	M1			
		their gradient 0.08 = 8.15 to 8.85	A1	or B2 from trials	2	

Mun My Marians January 20. Mains Cloud. Com 4753 (C3) Methods for Advanced Mathematics

Section A

$1 x-1 < 3 \implies -3 < x-1 < 3$ $\implies -2 < x < 4$	M1 A1 B1 [3]	or $x - 1 = \pm 3$, or squaring \Rightarrow correct quadratic \Rightarrow (x + 2)(x - 4) (condone factorising errors) or correct sketch showing y = 3 to scale -2 < < 4 (penalise \leq once only)
2(i) $y = x \cos 2x$ $\Rightarrow \frac{dy}{dx} = -2x \sin 2x + \cos 2x$	M1 B1 A1 [3]	product rule $d/dx (\cos 2x) = -2\sin 2x$ oe cao
(ii) $\int x \cos 2x dx = \int x \frac{d}{dx} (\frac{1}{2} \sin 2x) dx$	M1	parts with $u = x$, $v = \frac{1}{2} \sin 2x$
$= \frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x dx$ = $\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c$	A1 A1ft A1	$+\frac{1}{4}\cos 2x$ cao – must have + c
1	[4]	or $y = e^{(x-1)/2}$
3 Either $y = \frac{1}{2}\ln(x-1)$ $x \leftrightarrow y$ $\Rightarrow \qquad x = \frac{1}{2}\ln(y-1)$ $\Rightarrow \qquad 2x = \ln(y-1)$ $\Rightarrow \qquad e^{2x} = y-1$ $\Rightarrow \qquad 1 + e^{2x} = y$	M1 M1	of $y = e^{x}$ attempt to invert and interchanging x with y o.e. (at any stage) $e^{\ln y - 1} = y - 1$ or $\ln (e^{y}) = y$ used
$ \begin{array}{c} \Rightarrow & 1 + e^{2x} = y \\ \Rightarrow & g(x) = 1 + e^{2x} \end{array} $	E1	www
or $gf(x) = g(\frac{1}{2} \ln (x - 1))$ = 1 + e ^{ln(x - 1)}	M1	or $fg(x) = \dots$ (correct way round)
$= 1 + e^{m(x-1)}$ = 1 + x - 1 = x	M1 E1 [3]	$e^{\ln(x-1)} = x - 1$ or $\ln(e^{2x}) = 2x$ www
4 $\int_{0}^{2} \sqrt{1+4x} dx$ let $u = 1+4x$, $du = 4dx$	M1	u = 1 + 4x and $du/dx = 4$ or $du = 4dx$
$= \int_{1}^{9} u^{1/2} \cdot \frac{1}{4} du$	A1	$\int u^{1/2} \cdot \frac{1}{4} du$
$= \begin{bmatrix} \frac{1}{6}u^{3/2} \end{bmatrix}_{1}^{9}$	B1	$\int u^{1/2} du = \frac{u^{3/2}}{3/2} \text{soi}$
$= \frac{27}{6} - \frac{1}{6} = \frac{26}{6} = \frac{13}{3} \text{ or } 4\frac{1}{3}$	M1	substituting correct limits $(u \text{ or } x)$ dep attempt to integrate
$\frac{6}{0r} \frac{d}{dx} (1+4x)^{3/2} = 4 \cdot \frac{3}{2} (1+4x)^{1/2} = 6(1+4x)^{1/2}$	Alcao M1	$k(1+4x)^{3/2}$
un 2	Al	$\int (1+4x)^{1/2} dx = \frac{2}{3} (1+4x)^{3/2} \dots$
$\Rightarrow \int_{0}^{2} (1+4x)^{1/2} dx = \left[\frac{1}{6}(1+4x)^{3/2}\right]_{0}^{2}$	A1	\times ¹ / ₄
$= \frac{27}{6} - \frac{1}{6} = \frac{26}{6} = \frac{13}{3} \text{ or } 4\frac{1}{3}$	M1	substituting limits (dep attempt to integrate)
	A1cao [5]	

Mark Scheme

4753	Mark Schem	ne January 20. January 20. The January 20. The January 20. The state of the second s
5(i) period 180°	B1 [1]	condone $0 \le x \le 180^\circ$ or π
(ii) one-way stretch in x-direction scale factor $\frac{1}{2}$ translation in y-direction through $\begin{pmatrix} 0\\1 \end{pmatrix}$	M1 A1 M1 A1 [4]	[either way round] condone 'squeeze', 'contract' for M1 stretch used and s.f $\frac{1}{2}$ condone 'move', 'shift', etc for M1 'translation' used, +1 unit $\begin{pmatrix} 0\\1 \end{pmatrix}$ only is M1 A0
(iii) 2 -180 2 -180 180	M1 B1 A1 [3]	correct shape, touching <i>x</i> -axis at -90°, 90° correct domain (0, 2) marked or indicated (i.e. amplitude is 2)
6(i) e.g $p = 1$ and $q = -2$ $p > q$ but $1/p = 1 > 1/q = -\frac{1}{2}$	M1 E1 [2]	stating values of p, q with $p \ge 0$ and $q \le 0$ (but not p = $q = 0$) showing that $1/p > 1/q$ - if 0 used, must state that 1/0 is undefined or infinite
(ii) Both p and q positive (or negative)	B1 [1]	or $q > 0$, 'positive integers'
7(i) $\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}\frac{dy}{dx} = 0$	M1 A1	Implicit differentiation (must show = 0)
$\Rightarrow \qquad \frac{dy}{dx} = -\frac{\frac{2}{3}x^{-1/3}}{\frac{2}{3}y^{-1/3}}$	M1	solving for dy/dx
$=-\frac{y^{1/3}}{x^{1/3}}=-\left(\frac{y}{x}\right)^{\frac{1}{3}}$ *	E1 [4]	www. Must show, or explain, one more step.
(ii) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ = $-\left(\frac{8}{1}\right)^{\frac{1}{3}} \cdot 6$	M1 A1	any correct form of chain rule
=-12	A1cao [3]	

4753 Ma	ark Schen	ne January 20. Natifisc	Math Cloud
8(i) When $x = 1$ $y = 1^2 - (\ln 1)/8 = 1$ Gradient of PR = $(1 + 7/8)/1 = 1\frac{7}{8}$	B1 M1 A1 [3]	1.9 or better	
(ii) $\frac{dy}{dx} = 2x - \frac{1}{8x}$ When $x = 1$, $\frac{dy}{dx} = 2 - \frac{1}{8} = \frac{7}{8}$ Same as gradient of PR, so PR touches curve	B1 B1dep E1 [3]	cao 1.9 or better dep 1 st B1 dep gradients exact	
(iii) Turning points when $dy/dx = 0$ $\Rightarrow 2x - \frac{1}{8x} = 0$ $\Rightarrow 2x = \frac{1}{8x}$ $\Rightarrow x^2 = 1/16$ $\Rightarrow x = \frac{1}{4} (x > 0)$ When $x = \frac{1}{4}$, $y = \frac{1}{16} - \frac{1}{8} \ln \frac{1}{4} = \frac{1}{16} + \frac{1}{8} \ln 4$ So TP is $(\frac{1}{4}, \frac{1}{16} + \frac{1}{8} \ln 4)$	M1 M1 A1 M1 A1cao [5]	setting their derivative to zero multiplying through by x allow verification substituting for x in y o.e. but must be exact, not $1/4^2$. Mark final answer.	
(iv) $\frac{d}{dx}(x\ln x - x) = x \cdot \frac{1}{x} + 1 \cdot \ln x - 1 = \ln x$	M1 A1	product rule ln x	
Area = $\int_{1}^{2} (x^{2} - \frac{1}{8} \ln x) dx$ = $\left[\frac{1}{3} x^{3} - \frac{1}{8} (x \ln x - x) \right]_{1}^{2}$ = $(\frac{8}{3} - \frac{1}{4} \ln 2 + \frac{1}{4}) - (\frac{1}{3} - \frac{1}{8} \ln 1 + \frac{1}{8})$ = $\frac{7}{3} + \frac{1}{8} - \frac{1}{4} \ln 2$ = $\frac{59}{24} - \frac{1}{4} \ln 2$ *	M1 M1 A1 M1 E1 [7]	correct integral and limits (soi) – condone no dx $\int \ln x dx = x \ln x - x \text{ used (or derived using integration by parts)}$ $\frac{1}{3}x^3 - \frac{1}{8}(x \ln x - x) - \text{bracket required substituting correct limits}$ must show at least one step	

Mark Scheme

		k Scheme January 20. Agent	2 1432
4753	Mar	k Scheme January 20. 737	scioud
9(i) Asymptotes when $()(2x - x^2) = 0$ $\Rightarrow x(2 - x) = 0$ $\Rightarrow x = 0 \text{ or } 2$ so a = 2 Domain is $0 < x < 2$	M1 A1 B1ft [3]	or by verification $x > 0$ and $x < 2$, not \leq	
(ii) $y = (2x - x^2)^{-1/2}$ let $u = 2x - x^2$, $y = u^{-1/2}$ $\Rightarrow dy/du = -\frac{1}{2}u^{-3/2}$, $du/dx = 2 - 2x$ \Rightarrow $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{2}(2x - x^2)^{-3/2} \cdot (2 - 2x)$ $= \frac{x - 1}{(2x - x^2)^{3/2}} *$	M1 B1 A1 E1	chain rule (or within correct quotient rule) $-\frac{1}{2}u^{-3/2}$ or $-\frac{1}{2}(2x-x^2)^{-3/2}$ or $\frac{1}{2}(2x-x^2)^{-1/2}$ in quotient rule $\times (2-2x)$ www – penalise missing brackets here	
dy/dx = 0 when x - 1 = 0 $\Rightarrow x = 1, \\ y = 1/\sqrt{(2 - 1)} = 1$ Range is $y \ge 1$	M1 A1 B1 B1ft [8]	extraneous solutions M0	
(iii) (A) $g(-x) = \frac{1}{\sqrt{1 - (-x)^2}} = \frac{1}{\sqrt{1 - x^2}} = g(x)$	M1 E1	Expression for $g(-x)$ – must have $g(-x) = g(x)$ seen	
(B) $g(x-1) = \frac{1}{\sqrt{1-(x-1)^2}}$ = $\frac{1}{\sqrt{1-x^2+2x-1}} = \frac{1}{\sqrt{2x-x^2}} = f(x)$	M1 E1	must expand bracket	
(<i>C</i>) $f(x)$ is $g(x)$ translated 1 unit to the right. But $g(x)$ is symmetrical about Oy So $f(x)$ is symmetrical about $x = 1$.	M1 M1 A1	dep both M1s	
or $f(1-x) = g(-x)$, $f(1+x) = g(x)$ $\Rightarrow f(1+x) = f(1-x)$ $\Rightarrow f(x) \text{ is symmetrical about } x = 1.$	M1 E1 A1 [7]	or $f(1-x) = \frac{1}{\sqrt{2-2x-(1-x)^2}} = \frac{1}{\sqrt{2-2x-1+2x-x^2}} = \frac{1}{\sqrt{1-x^2}}$ $f(1+x) = \frac{1}{\sqrt{2+2x-(1+x)^2}} = \frac{1}{\sqrt{2+2x-1-2x-x^2}} = \frac{1}{\sqrt{1-x^2}}$	

January 20. Mains Cloud. com 4754 (C4) Applications of Advanced Mathematics

Section A

$1 \qquad \frac{3x+2}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{(x^2+1)}$ $\Rightarrow \qquad 3x+2 = A(x^2+1) + (Bx+C)x$ $x = 0 \Rightarrow 2 = A$ coefft of $x^2: 0 = A + B \Rightarrow B = -2$ coefft of $x: 3 = C$ $\Rightarrow \qquad \frac{3x+2}{x(x^2+1)} = \frac{2}{x} + \frac{3-2x}{(x^2+1)}$	M1 M1 B1 M1 A1 A1 [6]	correct partial fractions equating coefficients at least one of <i>B</i> , <i>C</i> correct
2(i) $(1+2x)^{1/3} = 1 + \frac{1}{3} \cdot 2x + \frac{\frac{1}{3} \cdot (-\frac{2}{3})}{2!} (2x)^2 + \dots$ $= 1 + \frac{2}{3}x - \frac{2}{18} 4x^2 + \dots$ $= 1 + \frac{2}{3}x - \frac{4}{9}x^2 + \dots *$ Next term $= \frac{\frac{1}{3} \cdot (-\frac{2}{3})(-\frac{5}{3})}{3!} (2x)^3$ $= \frac{40}{81}x^3$ Valid for $-1 < 2x < 1$ $\Rightarrow -\frac{1}{2} < x < \frac{1}{2}$	M1 A1 E1 M1 A1 B1 [6]	binomial expansion correct unsimplified expression simplification www
3 $4\mathbf{j} - 3\mathbf{k} = \lambda \mathbf{a} + \mu \mathbf{b}$ $= \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k}) + \mu(4\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ $\Rightarrow 0 = 2\lambda + 4\mu$ $4 = \lambda - 2\mu$ $-3 = -\lambda + \mu$ $\Rightarrow \lambda = -2\mu, 2\lambda = 4 \Rightarrow \lambda = 2, \mu = -1$	M1 M1 A1 A1, A1 [5]	equating components at least two correct equations
4 LHS = $\cot \beta - \cot \alpha$ $= \frac{\cos \beta}{\sin \beta} - \frac{\cos \alpha}{\sin \alpha}$ $= \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\sin \alpha \sin \beta}$ $= \frac{\sin(\alpha - \beta)}{\sin \alpha \sin \beta}$ OR RHS = $\frac{\sin(\alpha - \beta)}{\sin \alpha \sin \beta} = \frac{\sin \alpha \cos \beta}{\sin \alpha \sin \beta} - \frac{\cos \alpha \sin \beta}{\sin \alpha \sin \beta}$ $= \cot \beta - \cot \alpha$	M1 M1 E1 M1 M1 E1 [3]	cot = cos / sin combining fractions www using compound angle formula splitting fractions using cot=cos/sin

4754 M	/lark Scheme	January 20.	My Assis
5(i) Normal vectors $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ Angle between planes is θ , where	B1		Con
$\cos \theta = \frac{2 \times 1 + (-1) \times 0 + 1 \times (-1)}{\sqrt{2^2 + (-1)^2 + 1^2} \sqrt{1^2 + 0^2 + (-1)^2}}$ $= 1/\sqrt{12}$	M1 M1	scalar product finding invcos of scalar product divided by two modulae	
$\Rightarrow \theta = 73.2^{\circ} \text{ or } 1.28 \text{ rads}$	A1 [4]		
(ii) $\mathbf{r} = \begin{pmatrix} 2\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$ $= \begin{pmatrix} 2+2\lambda\\-\lambda\\1+\lambda \end{pmatrix}$	B1		
$ \begin{pmatrix} 1+\lambda \end{pmatrix} $ $ \Rightarrow 2(2+2\lambda) - (-\lambda) + (1+\lambda) = 2 $ $ \Rightarrow 5+6\lambda = 2 $ $ \Rightarrow \lambda = -\frac{1}{2} $ So point of intersection is $(1, \frac{1}{2}, \frac{1}{2})$	M1 A1 A1 [4]		
6(i) $\cos \theta + \sqrt{3} \sin \theta = r \cos(\theta - \alpha)$ = $R \cos \theta \cos \alpha + R \sin \theta \sin \alpha$ $\Rightarrow R \cos \alpha = 1, R \sin \alpha = \sqrt{3}$ $\Rightarrow R^2 = 1^2 + (\sqrt{3})^2 = 4, R = 2$	B1 M1	R = 2 equating correct pairs	
$\tan \alpha = \sqrt{3}$ $\Rightarrow \alpha = \pi/3$	M1 A1 [4]	$\tan \alpha = \sqrt{3}$ o.e.	
(ii) derivative of $\tan \theta$ is $\sec^2 \theta$ $\int_0^{\frac{\pi}{3}} \frac{1}{(\cos \theta + \sqrt{3} \sin \theta)^2} d\theta = \int_0^{\frac{\pi}{3}} \frac{1}{4} \sec^2(\theta - \frac{\pi}{3}) d\theta$	B1 M1	ft their α	
$= \left[\frac{1}{4}\tan(\theta - \frac{\pi}{3})\right]$	- 0	$\frac{1}{R^2}$ [tan ($\theta - \pi/3$] ft their R, α (in radians)	
$= \frac{1}{4} (0 - (-\sqrt{3})) \\= \sqrt{3}/4 *$	E1	www	
	[4]		

4754 Mark S	Scheme	January 20.
Section B		
7(i) (A) $9/1.5 = 6$ hours	B1	
(<i>B</i>) $18/1.5 = 12$ hours	B1 [2]	
(ii) $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta - \theta_0)$		
$\Rightarrow \int \frac{d\theta}{\theta - \theta_0} = \int -kdt$ $\Rightarrow \ln(\theta - \theta_0) = -kt + c$	M1 A1 A1	separating variables $\ln(\theta - \theta_0)$ -kt + c
$\theta - \theta_0 = e^{-kt+c}$ $\theta = \theta_0 + Ae^{-kt} *$	M1	anti-logging correctly(with <i>c</i>)
$\theta = \theta_0 + A e^{-kt} *$	E1 [5]	$A=e^{c}$
(iii) $98 = 50 + Ae^0$ $\Rightarrow A = 48$	M1 A1	
Initially $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(98-50) = -48k = -1.5$ $\Rightarrow k = 0.03125^*$	M1 E1 [4]	
(iv) (A) $89 = 50 + 48e^{-0.03125t}$ $\Rightarrow 39/48 = e^{-0.03125t}$ $\Rightarrow t = \ln(39/48)/(-0.03125) = 6.64$ hours	M1 M1 A1	equating taking lns correctly for either
$(B) \ 80 = 50 + 48e^{-0.03125t}$	M1	
$\Rightarrow 30/48 = e^{-0.03125t} \Rightarrow t = \ln(30/48)/(-0.03125) = 15 \text{ hours}$	A1	
	[5]	
(v) Models disagree more for greater temperature loss	B1 [1]	

4754 Mark Sc	heme	January 20	Mu Assess
8(i) $\frac{dy}{d\theta} = 2\cos 2\theta - 2\sin \theta$, $\frac{dx}{d\theta} = 2\cos \theta$ $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ $\frac{dy}{dx} = \frac{2\cos 2\theta - 2\sin \theta}{2\cos \theta} = \frac{\cos 2\theta - \sin \theta}{\cos \theta}$	B1, B1 M1 A1 [4]	substituting for theirs oe	COM
(ii) When $\theta = \pi/6$, $\frac{dy}{dx} = \frac{\cos \pi/3 - \sin \pi/6}{\cos \pi/6}$ $= \frac{1/2 - 1/2}{\sqrt{3}/2} = 0$ Coords of B: $x = 2 + 2\sin(\pi/6) = 3$ $y = 2\cos(\pi/6) + \sin(\pi/3) = 3\sqrt{3}/2$ BC = $2 \times 3\sqrt{3}/2 = 3\sqrt{3}$	E1 M1 A1,A1 B1ft [5]	for either exact	
(iii) (A) $y = 2\cos\theta + \sin 2\theta$ $= 2\cos\theta + 2\sin\theta\cos\theta$ $= 2\cos\theta(1 + \sin\theta)$ $= x\cos\theta^*$ (B) $\sin\theta = \frac{1}{2}(x-2)$ $\cos^2\theta = 1 - \sin^2\theta$ $= 1 - \frac{1}{4}(x-2)^2$ $= 1 - \frac{1}{4}x^2 + x - 1$ $= (x - \frac{1}{4}x^2)^*$ (C) Cartesian equation is $y^2 = x^2\cos^2\theta$ $= x^2(x - \frac{1}{4}x^2)$ $= x^3 - \frac{1}{4}x^{4*}$	M1 E1 B1 M1 E1 M1 E1 [7]	$\sin 2\theta = 2 \sin \theta \cos \theta$ squaring and substituting for <i>x</i>	
(iv) $V = \int_0^4 \pi y^2 dx$ $= \pi \int_0^4 (x^3 - \frac{1}{4}x^4) dx$ $= \pi \left[\frac{1}{4} x^4 - \frac{1}{20} x^5 \right]_0^4$ $= \pi (64 - 51.2)$ $= 12.8\pi = 40.2 \text{ (m}^3)$	M1 B1 A1 [3]	need limits $\left[\frac{1}{4}x^4 - \frac{1}{20}x^5\right]$ 12.8 π or 40 or better.	

			mm	A CON
47	54 Mark Scheme		January 20	A Maths))
Co	mprehension			Cloud.cot
1	$\frac{400\pi d}{1000} = 10$	M1		m
	1000 $d = \frac{25}{-7.96}$	E1		
2	$\frac{u - \frac{1}{\pi} - 7.96}{V = \pi 20^2 h + \frac{1}{2} (\pi 20^2 H - \pi 20^2 h)}$	M1		
	$=\frac{1}{2}(\pi 20^{2}H + \pi 20^{2}h) \text{ cm}^{3} = 200\pi (H+h) \text{ cm}^{3}$	M1	divide by 1000	
	$=\frac{1}{5}\pi(H+h)$ litres	E1	1000	
3	$H = 5 + 40 \tan 30^\circ \text{or } H = h + 40 \tan \theta$	B1	or evaluated	
	$V = \frac{1}{5}\pi (H+h) = \frac{1}{5}\pi (10+40\tan 30^\circ)$	M1	including substitution of values	
	=20.8 litres	A1		
4	$V = \frac{1}{2} \times 80 \times (40 + 5)$	M1		
	$\times 30 \text{ cm}^3 = 54\ 000 \text{ cm}^3$ = 54 litres	M1 A1	×30	
5	(i) Accurate algebraic simplification to give $y^2 - 160y + 400 = 0$	B1		
	(ii) Use of quadratic formula (or other method) to find other root: $d = 157.5$ cm. This is greater than the height of the tank so not possible	M1 A1		
		E1		
6	y=10 Substitute for y in(4):	B1		
	$V = \frac{1}{1000} \int_0^{100} 375 \mathrm{d}x$	M1		
	$V = \frac{1}{1000} \times 37500 = 37.5 *$	E1		
		[18]		

January 20. Mainscloud.com

4755 (FP1) Further Concepts for Advanced Mathematics

Section A

1(i)	$z = \frac{6 \pm \sqrt{36 - 40}}{2}$ $\Rightarrow z = 3 + j \text{ or } z = 3 - j$	M1 A1 [2]	Use of quadratic formula/completing the square For both roots
1(ii)	$ 3+j = \sqrt{10} = 3.16 \ (3s.f.)$	M1	Method for modulus
	$\arg(3+j) = \arctan(\frac{1}{3}) = 0.322 \ (3s.f.)$	M1	Method for argument (both methods must be seen
	$\Rightarrow \text{roots are } \sqrt{10} (\cos 0.322 + j\sin 0.322)$ and $\sqrt{10} (\cos 0.322 - j\sin 0.322)$ or $\sqrt{10} (\cos(-0.322) + j\sin(-0.322))$	A1 [3]	(both methods must be seen following A0) One mark for both roots in modulus- argument form – accept surd and decimal equivalents and (r, θ) form. Allow $\pm 18.4^{\circ}$ for θ .
2	$2x^{2} - 13x + 25 = A(x-3)^{2} - B(x-2) + C$ $\Rightarrow 2x^{2} - 13x + 25$ $= Ax^{2} - (6A + B)x + (2B + C) + 9A$ A = 2 B = 1	B1 M1 A1	For A=2 Attempt to compare coefficients of x^1 or x^0 , or other valid method. For B and C,
	B = 1 C = 5	A1	cao.
		[4]	
3(i)	$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$	B1	
	(0, 2)	[1]	
3(ii)	$ \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 4 & 0 \\ 0 & 0 & 6 & 6 \end{pmatrix} $ $ \Rightarrow \Lambda'' = \begin{pmatrix} 4 & 0 \\ 0 & 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 4 & 0 \\ 0 & 0 & 6 & 6 \end{pmatrix} $	M1	Applying matrix to column vectors, with a result.
	$\Rightarrow A''=(4, 0), B''=(4, 6), C''=(0, 6)$	A1 [2]	All correct
3(iii)	Stretch factor 4 in x-direction. Stretch factor 6 in y-direction	B1 B1 [2]	Both factor and direction for each mark. SC1 for "enlargement", not stretch.

4755	Mark Schem	10	January 20. Fequation involving arg(complex	PIOK SHERE
4	$\arg\left(z-(2-2j)\right)=\frac{\pi}{4}$	B1 B1 B1	Equation involving arg(complex variable). Argument (complex expression) = $\frac{\pi}{4}$ All correct	COR
5	Sum of roots = $\alpha + (-3\alpha) + \alpha + 3 = 3 - \alpha = 5$ $\Rightarrow \alpha = -2$	[3] M1 A1	Use of sum of roots	
	Product of roots = $-2 \times 6 \times 1 = -12$ Product of roots in pairs	M1 M1	Attempt to use product of roots Attempt to use sum of products of roots in pairs	
	$= -2 \times 6 + (-2) \times 1 + 6 \times 1 = -8$ $\Rightarrow p = -8 \text{ and } q = 12$	A1 A1 [6]	One mark for each, ft if α incorrect	
	Alternative solution $(x-\alpha)(x+3\alpha)(x-\alpha-3)$ $=x^3+(\alpha-3)x^2+(-5\alpha^2-6\alpha)x+3\alpha^3+9\alpha^2$ $=> \alpha = -2,$ p = -8 and $q = 12$	M1 M1A1 M1 A1A1 [6]	Attempt to multiply factors Matching coefficient of x^2 , cao. Matching other coefficients One mark for each, ft incorrect α .	
6	$\sum_{r=1}^{n} \left[r \left(r^{2} - 3 \right) \right] = \sum_{r=1}^{n} r^{3} - 3 \sum_{r=1}^{n} r$ $= \frac{1}{4} n^{2} \left(n + 1 \right)^{2} - \frac{3}{2} n \left(n + 1 \right)$ $= \frac{1}{4} n \left(n + 1 \right) \left(n \left(n + 1 \right) - 6 \right)$ $= \frac{1}{4} n \left(n + 1 \right) \left(n^{2} + n - 6 \right) = \frac{1}{4} n \left(n + 1 \right) \left(n + 3 \right) \left(n - 2 \right)$	M1 M1 A2 M1 A1 [6]	Separate into separate sums. (may be implied) Substitution of standard result in terms of n . For two correct terms (indivisible) Attempt to factorise with $n(n+1)$. Correctly factorised to give fully factorised form	

755	Mark Scheme		January 20. January 20.
7	When $n = 1$, $6(3^n - 1) = 12$, so true for $n = 1$	B1	
	Assume true for $n = k$ 12+36+108++(4×3 ^k) = 6(3 ^k - 1)	E1	Assume true for <i>k</i>
	$\Rightarrow 12 + 36 + 108 + \dots + (4 \times 3^{k+1})$ = 6(3 ^k - 1) + (4 × 3 ^{k+1})	M1	Add correct next term to both sides
	$= 6\left[\left(3^k - 1 \right) + \frac{2}{3} \times 3^{k+1} \right]$	M1	Attempt to factorise with a factor 6
	$ = 6 [3^{k} - 1 + 2 \times 3^{k}] $ = 6 (3 ^{k+1} - 1)	A1	c.a.o. with correct simplification
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for $n = k$, it is true for $n = k + 1$.	E1	Dependent on A1 and first E1
	Since it is true for $n = 1$, it is true for $n = 1, 2$, 3 and so true for all positive integers.	E1 [7]	Dependent on B1 and second E1

			Attempt to multiply $(1+i)(1-i)$	ALL LAND
4755	Mark Schem	е	January 20	the start of the s
9(i)	$\alpha + \beta = 3$	B1		oud.com
	$\alpha \alpha^* = (1+j)(1-j) = 2$ $\frac{\alpha + \beta}{\alpha} = \frac{3}{1+j} = \frac{3(1-j)}{(1+j)(1-j)} = \frac{3}{2} - \frac{3}{2}j$	M1 A1 M1 A1 [5]	Attempt to multiply $(1+j)(1-j)$ Multiply top and bottom by $1-j$	
9(ii)	(z - (1 + j))(z - (1 - j)) = $z^2 - 2z + 2$	M1 A1 [2]	Or alternative valid methods (Condone no "=0" here)	
9(iii)	1-j and $2+j$	B1	For both	
	Either (z-(2-j))(z-(2+j)) $= z^2 - 4z + 5$	M1	For attempt to obtain an equation using the product of linear factors involving complex conjugates	
	(z2 - 2z + 2)(z2 - 4z + 5) = z ⁴ - 6z ³ + 15z ² - 18z + 10	M1	Using the correct four factors	
	So equation is $z^4 - 6z^3 + 15z^2 - 18z + 10 = 0$	A2 [5]	All correct, -1 each error (including omission of "=0") to min of 0	
	Or alternative solution Use of $\sum \alpha = 6$, $\sum \alpha \beta = 15$, $\sum \alpha \beta \gamma = 18$ and $\alpha \beta \gamma \delta = 10$	M1	Use of relationships between roots and coefficients.	
	to obtain the above equation.	A3 [5]	All correct, -1 each error, to min of 0	

Mark Scheme

			www.m.
4755	Mark Schem	e	January 20 That the states
10(i)	$\alpha = 3 \times -5 + 4 \times 11 + -1 \times 29 = 0$ $\beta = -2 \times -7 + 7 \times (5 + k) + -3 \times 7 = 28 + 7k$	B1 M1 A1	Attempt at row 3 x column 3
10(ii)	$\mathbf{AB} = \begin{pmatrix} 42 & 0 & 0 \\ 0 & 42 & 0 \\ 0 & 0 & 42 \end{pmatrix}$	[3] B2 [2]	Minus 1 each error to min of 0
10(iii) 10(iv)	$\mathbf{A}^{-1} = \frac{1}{42} \begin{pmatrix} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{pmatrix}$	M1 B1 A1 [3]	Use of B $\frac{1}{42}$ Correct inverse, allow decimals to 3 sf
	$\frac{1}{42} \begin{pmatrix} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ -9 \\ 26 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $= \frac{1}{42} \begin{pmatrix} -126 \\ 84 \\ -84 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ -2 \end{pmatrix}$	M1	Attempt to pre-multiply by A^{-1} SC B2 for Gaussian elimination with 3 correct solutions, -1 each error to min of 0
	x = -3, y = 2, z = -2	A3 [4]	Minus 1 each error
			Section B Total: 36
			Total: 72

January 20. Mainscloud.com

4756 (FP2) Further Methods for Advanced Mathematics

1	$f(x) = \cos x$	f(0) = 1	M1	Derivatives cos, sin, cos, sin, cos
(a)(i)	$f'(x) = -\sin x$	f'(0) = 0		
	$f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f'''(x) = \cos x$	f''(0) = -1 f'''(0) = 0	A1	Correct signs
	$f'''(x) = \cos x$	f'''(0) = 1	A1 A1 (ag)	Correct values. Dep on previous A1 www
	$\Rightarrow \cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}$ $\cos x \times \sec x = 1$	$-\frac{1}{4}x^4$	AI (ag)	~~~~
(ii)			E1	o.e.
	$\Rightarrow \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right) \left(1 - \frac{1}{24}x^4\right) = \frac{1}{24}x^4 =$	$+ax^2+bx^4\big)=1$	M1	Multiply to obtain terms in x^2 and x^4
	$\Rightarrow 1 + \left(a - \frac{1}{2}\right)x^2 + \left(b - \frac{1}{2}\right)x^2 + \left(a - \frac{1}{2}\right)x^2 + \left(b - \frac{1}{2}\right)x^2 + \left(a - \frac{1}{2}\right)x^2 + \left$		A1	Terms correct in any form (may not be collected)
	$\Rightarrow a - \frac{1}{2} = 0, b - \frac{1}{2}a +$	$\frac{1}{24} = 0$		
	$\Rightarrow a = \frac{1}{2}$		B1	Correctly obtained by any method: must not just be stated
	$b = \frac{5}{24}$		B1	Correctly obtained by any method
			5	
(b)(i)	$y = \arctan \frac{x}{a}$			
	$\Rightarrow x = a \tan y$		M1	(a) $\tan y = $ and attempt to differentiate both sides
	$\Rightarrow \frac{dx}{dy} = a \sec^2 y$		A1	Or $\sec^2 y \frac{dy}{dx} = \frac{1}{a}$
	$\Rightarrow \frac{dx}{dy} = a(1 + \tan^2 y)$		A1	Use $\sec^2 y = 1 + \tan^2 y$ o.e.
	$\Rightarrow \frac{dy}{dx} = \frac{a}{a^2 + x^2}$		A1 (ag)	www
				SC1: Use derivative of arctan x and Chain Rule (properly shown)
		-2	4 M1	arctan alone, or any tan substitution
(ii)(A)	$\int_{-2}^{2} \frac{1}{4+x^2} dx = \left[\frac{1}{2}\arctan\frac{x}{2}\right]$]2	Al	$\frac{1}{2}$ and $\frac{x}{2}$, or $\int \frac{1}{2} d\theta$ without limits
	$=\frac{\pi}{4}$		A1	Evaluated in terms of π
	· ·		3	
(ii)(B)	$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4}{1+4x^2} dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\frac{1}{4}+x^2} dx$		M1	arctan alone, or any tan substitution
	$= \left[2 \arctan(2x)\right]_{-\frac{1}{2}}^{\frac{1}{2}}$		Al	2 and 2 <i>x</i> , or $\int 2d\theta$ without limits
	$=\pi$		A1 3	Evaluated in terms of π 19

4750			Must be separate Accept 60°, 1.05°	M 13
4756	Mark Sch	ieme	January 20. 10	ths clo
2 (i)	Modulus = 1	B1	Must be separate	· · · · · · · · · · · · · · · · · · ·
	Argument = $\frac{\pi}{3}$	B1 2	Accept 60°, 1.05°	m
(ii)			G2: A in first quadrant, argument $\approx \frac{\pi}{4}$ B in second quadrant, same mod B' in fourth quadrant, same mod	
	$a = 2e^{\frac{j\pi}{4}}$	G2,1,0 B1	Symmetry G1: 3 points and at least 2 of above, or B, B' on axes, or BOB' straight line, or BOB' reflex Must be in required form (accept $r = 2, \theta = \pi/4$)	
	$\arg b = \frac{\pi}{4} \pm \frac{\pi}{3}$	M1	Rotate by adding (or subtracting) $\pi/3$ to (or from) argument. Must be $\pi/3$	
	$b = 2 e^{-\frac{j\pi}{12}}, 2 e^{\frac{7j\pi}{12}}$	A1ft 5	Both. Ft value of r for a . Must be in required form, but don't penalise twice	
(iii)	$z_1^{\ 6} = \left(\sqrt{2}e^{\frac{j\pi}{3}}\right)^6 = \left(\sqrt{2}\right)^6 e^{2j\pi}$	M1	$\left(\sqrt{2}\right)^6 = 8 \text{ or } \frac{\pi}{3} \times 6 = 2\pi \text{ seen}$	
	= 8	A1 (ag)	www	
	Others are $re^{j\theta}$ where $r = \sqrt{2}$	M1	"Add" $\frac{\pi}{3}$ to argument more than once	
	and $\theta = -\frac{2\pi}{3}, -\frac{\pi}{3}, 0, \frac{2\pi}{3}, \pi$	A1	Correct constant <i>r</i> and five values of θ . Accept θ in $[0, 2\pi]$ or in degrees	
		G1 G1 6	6 points on vertices of regular hexagon Correctly positioned (2 roots on real axis). Ignore scales SC1 if G0 and 5 points correctly plotted	
	$w = z_1 e^{-\frac{j\pi}{12}} = \sqrt{2} e^{\frac{j\pi}{3}} e^{-\frac{j\pi}{12}} = \sqrt{2} e^{\frac{j\pi}{4}}$	M1	$\arg w = \frac{\pi}{3} - \frac{\pi}{12}$	
	$=\sqrt{2}\left(\cos\frac{\pi}{4}+j\sin\frac{\pi}{4}\right)$			
	= 1 + j	A1 G1 3	Or B2 Same modulus as z_1	
(v)	$w^6 = \left(\sqrt{2}e^{\frac{j\pi}{4}}\right)^6 = 8e^{\frac{3j\pi}{2}}$	M1	Or $z_1^6 e^{-\frac{j\pi}{2}} = 8 e^{-\frac{j\pi}{2}}$	
	=-8j	A1 2	cao. Evaluated 18	

				www.my	12
4756	Mark Sche			January 20	ths cu
3(a)(i)	Region for (ii)	G1		www.myms January 20.	TOULI.COM
		G1 G1	3	Correct for $0 \le \theta \le \pi/3$ (ignore extra) Gradient less than 1 at O	
(ii)	Area = $\int_{0}^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta = \frac{1}{2} a^2 \int_{0}^{\frac{\pi}{4}} \tan^2 \theta d\theta$	M1		Integral expression involving $tan^2\theta$	
	$= \frac{1}{2}a^2 \int_{0}^{\frac{\pi}{4}} \sec^2 \theta - 1d\theta$ $= \frac{1}{2}a^2 [\tan \theta - \theta]_{0}^{\frac{\pi}{4}}$	M1		Attempt to express $tan^2\theta$ in terms of $sec^2\theta$	
	$=\frac{1}{2}a^2\left[\tan\theta-\theta\right]_0^{\frac{\pi}{4}}$	A1		$\tan \theta - \theta$ and limits 0, $\frac{\pi}{4}$	
	$=\frac{1}{2}a^2\left(1-\frac{\pi}{4}\right)$	A1		A0 if e.g. triangle – this answer	
		G1	5	Mark region on graph	
(b)(i)	Characteristic equation is $(0.2 - \lambda)(0.7 - \lambda) - 0.24 = 0$ $\Rightarrow \lambda^2 - 0.9\lambda - 0.1 = 0$	M1			
	$\Rightarrow \lambda = 1, -0.1$ When $\lambda = 1, \begin{pmatrix} -0.8 & 0.8 \\ 0.3 & -0.3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	A1		$(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = \mathbf{x} \text{ M0 below}$	
	$\Rightarrow -0.8x + 0.8y = 0, \ 0.3x - 0.3y = 0$ $\Rightarrow x - y = 0, \text{ eigenvector is } \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ o.e.}$	M1 A1		At least one equation relating <i>x</i> and <i>y</i>	
	When $\lambda = -0.1$, $\begin{pmatrix} 0.3 & 0.8 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\Rightarrow 0.3x + 0.8y = 0$	M1		At least one equation relating x and y	
	$\Rightarrow \text{ eigenvector is } \begin{pmatrix} 8 \\ -3 \end{pmatrix} \text{ o.e.}$	A1	6		
(ii)	$\mathbf{Q} = \begin{pmatrix} 1 & 8 \\ 1 & -3 \end{pmatrix}$	B1ft		B0 if Q is singular. Must label correctly	
	$\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & -0.1 \end{pmatrix}$	B1ft B1	3	If order consistent. Dep on B1B1 earned 17	

4756	Mark Schei	me	Both expressions (M0 if no "middle"	
			I's cr	v
4 (a)(i)	$\cosh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 = \frac{1}{4}(e^{2x} + 2 + e^{-2x})$			HO.COM
	$\sinh^2 x = \left[\frac{1}{2}\left(e^x - e^{-x}\right)\right]^2 = \frac{1}{4}\left(e^{2x} - 2 + e^{-2x}\right)$	M1	term) and subtraction	
	$\cosh^2 x - \sinh^2 x = \frac{1}{4}(2+2) = 1$	A1 (ag) 2	www	
	OR $\cosh x + \sinh x = e^x$	1		I
	$\cosh x - \sinh x = e^{-x}$ $\cosh^2 x - \sinh^2 x = e^x \times e^{-x} = 1$ A1	-	Both, and multiplication Completion	l
(ii)(A)		M1	Use of $\cosh^2 x = 1 + \sinh^2 x$ and $\sinh x = \tan y$	l
	$\Rightarrow \tanh x = \frac{\sinh x}{\cosh x} = \frac{\tan y}{\sec y} = \sin y$	A1 A1 (ag) 3	WWW	I
(ii)(B)		3 M1	Attempt to use ln form of arsinh	I
	$\Rightarrow \operatorname{arsinh}(\tan y) = \ln(\tan y + \sqrt{1 + \tan^2 y})$	A1		
			www	
	OR $\sinh x = \tan y \Rightarrow \frac{e^x - e^{-x}}{2} = \tan y$			
	$\Rightarrow e^{2x} - 2e^x \tan y - 1 = 0 $ M1		Arrange as quadratic and solve for e^x	
	$\Rightarrow e^x = \tan y \pm \sqrt{\tan^2 y + 1} $ A1		o.e.	
	$\Rightarrow x = \ln(\tan y + \sec y) $ A1		WWW	
(b)(i)		M1	tanh y = and attempt to differentiate	
	$\Rightarrow \frac{dx}{dy} = \operatorname{sech}^2 y$		Or sech ² y $\frac{dy}{dx} = 1$	
	$\Rightarrow \frac{dy}{dx} = \frac{1}{\operatorname{sech}^2 y} = \frac{1}{1 - \tanh^2 y} = \frac{1}{1 - x^2}$	A1	Or B2 for $\frac{1}{1-x^2}$ www	
	Integral = $\left[\operatorname{artanh} x\right]_{-\frac{1}{2}}^{\frac{1}{2}}$	M1	artanh or any tanh substitution	
	$-2 \arctan \frac{1}{2}$	A1 (ag) 4	www	
(ii)	$\frac{1}{1-x^2} = \frac{1}{(1-x)(1+x)} = \frac{A}{1-x} + \frac{B}{1+x}$			
		M1	Correct form of partial fractions and	
	$\Rightarrow 1 = A(1+x) + B(1-x)$ $\Rightarrow A = \frac{1}{2}, B = \frac{1}{2}$	A1	attempt to evaluate constants	
	$\Rightarrow \int \frac{1}{1-x^2} dx = \int \frac{\frac{1}{2}}{1-x} + \frac{\frac{1}{2}}{1+x} dx$		Log integrals	
	$= -\frac{1}{2}\ln 1-x + \frac{1}{2}\ln 1+x + c \text{ or } \frac{1}{2}\ln \frac{1+x}{1-x} + c \text{ o.e.}$	A1	www. Condone omitted modulus signs and constant After 0 scored, SC1 for correct answer	
(iii)	$-\frac{1}{2}$	4 M1	Substitution of $\frac{1}{2}$ and $-\frac{1}{2}$ seen anywhere (or correct use of 0, $\frac{1}{2}$)	
	$\Rightarrow 2 \operatorname{artanh} \frac{1}{2} = \ln 3 \Rightarrow \operatorname{artanh} \frac{1}{2} = \frac{1}{2} \ln 3$	A1 (ag)		
	<u> </u>	2	18	

			mm.m.	
4756	Mark Schen	ne	January 20 January 20	Anaths a
5 (i)		G1 G1 G1	Symmetry in horizontal axis (3, 0) to (0, 0) (0, 0) to (0, 1)	OUD COM
(ii)(B)	a > 0.5 a < -0.5 Circle: <i>r</i> is constant The two loops get closer together The shape becomes more nearly circular Cusp a = -0.5	3 B1 B1 B1 B1 B1 B1 B1 7	Shape and reason	
	$1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ If $a > 0.5$, $-1 < -\frac{1}{2a} < 0$ and there are two values of θ in $[0, 2\pi]$, $\pi - \arccos\left(\frac{1}{2a}\right)$ and $\pi + \arccos\left(\frac{1}{2a}\right)$ These differ by $2 \arccos\left(\frac{1}{2a}\right)$	B1 M1 A1 (ag)	Equation	
	$\operatorname{arccos}\left(\frac{1}{2a}\right) = \arctan \sqrt{4a^2 - 1}$ Tangents are $y = x\sqrt{4a^2 - 1}$ and $y = -x\sqrt{4a^2 - 1}$ $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$	M1 A1 A1ft E1 8	Relating arccos to arctan by triangle or $tan^2\theta = sec^2\theta - 1$ Negative of above 18	

January 20. Mains Cloud. com

4758 Differential Equations

r			
1(i)	$\alpha^3 + 2\alpha^2 - \alpha - 2 = 0$	B1	
	$(-2)^3 + 2(-2)^2 - (-2) - 2 = 0$	E1	Or factorise
	$(\alpha+2)(\alpha^2-1)=0$	M1	Solve
	$\alpha = -2, \pm 1$	A1	
	$y = Ae^{-2x} + Be^{-x} + Ce^{x}$	M1	Attempt CF
		F1	CF for their three roots
			6
(ii)	PI $y = \frac{2}{-2} = -1$	M1	Constant PI
		A1	Correct PI
	GS $y = -1 + Ae^{-2x} + Be^{-x} + Ce^{x}$	F1	GS = PI + CF
			3
(iii)	$e^x \to \infty$ as $x \to \infty$	M1	Consider as $x \to \infty$
	so finite limit $\Rightarrow C = 0$	F1	Must be shown, not just stated
	$x = 0, y = 0 \Longrightarrow 0 = -1 + A + B$	M1	Use condition
	$x = \ln 2, y = 0 \Longrightarrow 0 = -1 + \frac{1}{4}A + \frac{1}{2}B$	M1	Use condition
	Solving gives $A = -2, B = 3$	M1	
	$y = -2e^{-2x} + 3e^{-x} - 1$	E1	Convincingly shown
-			6
(iv)	$y = -(2e^{-x} - 1)(e^{-x} - 1)$		
	$y = 0 \Leftrightarrow e^{-x} = \frac{1}{2} \text{ or } 1$	M1	Solve
	$\Leftrightarrow x = \ln 2 \text{ or } 0$	E1	Convincingly show no other roots
	$\frac{dy}{dx} = 4e^{-2x} - 3e^{-x} = e^{-x}(4e^{-x} - 3)$		
	$\frac{dx}{dx} = 0 \iff e^{-x} = \frac{3}{4} \operatorname{as} e^{-x} \neq 0$	M1	Solve
	$\Leftrightarrow x = \ln \frac{4}{3}$	E1	Show only one root
	Stationary point at $(\ln \frac{4}{3}, \frac{1}{8})$	A1	
	~ 1 > 2 / 0 /		5
(v)	ν.	B1	Through (0, 0)
	y (In(4/3),1/8) In2	B1	Through (ln 2, 0)
	→x	B1	Stationary point at their answer to (iv)
	-1	B1	$y \rightarrow -1 \text{ as } x \rightarrow \infty$
L			4

4758	Mark S	cheme	January 2	w.m.y.m.arnscioud.com
2(i)	$\frac{dy}{dx} + y \tan x = x \cos x$	M1	Rearrange	Com
	$I = \exp \int \tan x dx$	M1	Attempt IF	
	$= \exp \ln \sec x$	A1	Correct IF	
	$= \sec x$	A1	Simplified	
	$\frac{d}{dx}(y\sec x) = x$	M1	Multiply and recognise derivative	,
	$y \sec x = \frac{1}{2}x^2 + A$	M1	Integrate	
		A1	RHS	
	$y = (\frac{1}{2}x^2 + A)\cos x$	F1	Divide by their IF (must divide constant)	
	$x = 0, y = 1 \Longrightarrow A = 1$	M1	Use condition	
	$y = (\frac{1}{2}x^2 + 1)\cos x$	F1	Follow their non-trivial GS	
	-			10
(ii)		B1 B1	Shape correct for $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$ Through (0,1)	
	$-\pi/2$ x			2
(iii)	$y' = \frac{x \cos x \sin x - y \sin x}{\cos x}$	M1	Rearrange	
	y'(0) = 0	B1		
	y(0,1) = 1	B1		
	y'(0.1) = -0.090351	B1		
	$y(0.2) = 1 + 0.1 \times -0.090351 = 0.990965$	M1 A1	Use of algorithm for second step 3sf or better	
		111	551 01 00001	6
(iv)	$I = \sec x$	M1	Same IF as in (i) or attempt from scratch	
	$\frac{d}{dx}(y\sec x) = x\tan x$	A1		
	$[y \sec x]_{x=0}^{x=0.2} = \int_0^{0.2} x \tan x dx$	M1	Integrate	
		A1	Accept no limits	
	$y(0.2) \sec(0.2) - 1 \times \sec 0 \approx 0.002688$	M1	Substitute limits (both sides)	
	$\Rightarrow y(0.2) \approx 0.982701$	A1	Awrt 0.983	6
				6

January 20. Mainscloud.com

3(i)
$$60v \frac{dv}{dx} = 60g - \frac{1}{4}v^2$$
M1N2L $\frac{v}{240g - v^2} \frac{dv}{dx} = \frac{1}{240}$ A1Correct N2L equation $\int \frac{v}{240g - v^2} \frac{dv}{dx} = \int \frac{1}{240} dx$ M1Integrate $-\frac{1}{2} \ln [240g - v^2] = \frac{1}{240} x + c$ A1 $\ln [240g - v^2]$ seenA1RHS $240g - v^2 = Ae^{\frac{x}{130}}$ M1RHS $240g - v^2 = Ae^{\frac{x}{130}}$ M1Use condition $v^2 = 240g(1 - e^{-\frac{1}{130}})$ A1Cao(ii) $x = 0, v = 0 \Rightarrow A = 240g$ M1 $v^2 = 240g(1 - e^{-\frac{1}{130}}) \approx 13.71$ E1Convincingly shown(iii) $x = 10 \Rightarrow v = \sqrt{240g(1 - e^{-\frac{1}{130}})} \approx 13.71$ E1Convincingly shown(iii) $x = 10 \Rightarrow v = \sqrt{240g(1 - e^{-\frac{1}{130}})} \approx 13.71$ E1Convincingly shown(iii) $60g - 60v - 90g$ M1N2L $\frac{dv}{dt} = -\frac{1}{2}g - v \text{ or } \frac{dv}{dt} + v = -\frac{1}{2}g$ A1Correct DF:Solving DE (three alternative methods): $\int \frac{dv}{v + \frac{1}{2}g} = \int -dt$ M1Separate $\ln |v + \frac{1}{2}g| = -t + k$ M1IntegrateM1 $v + \frac{1}{2}g = Ae^{-t}$ M1Solve auxiliary equationor $a + 1 = 0 \Rightarrow a = -1$ M1Solve auxiliary equation $M1 - \frac{1}{2}g$ M1All correctM1 $v = Ae^{-t} - \frac{1}{2}g$ M1M1Integrate $v = Ae^{-t} - \frac{1}{2}g + A$ M1M1 $v = Ae^{-t} - \frac{1}{2}g + A$ M1M1 $v = 4e^{-t} - \frac{1}{2}g + A$ M1Integrate $v = 4e^{-t} - \frac{1}{2}g + A$ M1M1

4758 Mark Scher	ne		January 2 velocity to zero and attempt olve	Myma
		Set	velocity to zero and attempt	
(iv) At greatest depth, $v = 0$	M1	to set	olve	
$\Rightarrow e^{-t} = \frac{4.9}{18.61} \Rightarrow t = 1.3345$	A1			
Depth = $\int_0^{1.3345} (18.61e^{-t} - 4.9)dt$	M1	Inte	grate	
$= \left[-18.61e^{-t} - 4.9t \right]_{0}^{1.3345}$	A1	Igno	ore limits	
	M1		limits (or evaluate constant	
= 7.17 m	A1		substitute for <i>t</i>) correct	6
$ \begin{array}{c} -3x - y + 7 = 0 \\ 2x - y + 2 = 0 \end{array} \right\} \Leftrightarrow \begin{array}{c} x = 1 \\ y = 4 \end{array} $		B1		
$2x - y + 2 = 0 f \Leftrightarrow y = 4$		B1		
(ii) $\ddot{x} = -3\dot{x} - \dot{y}$) (1		2
ii) $\ddot{x} = -3\dot{x} - \dot{y}$ = $-3\dot{x} - (2x - y + 2)$		M1 M1	Differentiate Substitute for \dot{y}	
y = -3x - (2x - y + 2) $y = -3x + 7 - \dot{x}$		M1 M1	y in terms of x, \dot{x}	
$\dot{y} = -3\dot{x} + 7 - \dot{x}$ $\ddot{x} = -3\dot{x} - 2x - 3x + 7 - \dot{x} - 2$		M1 M1	Substitute for y	
$x = -5x - 2x - 5x + 7 - x - 2$ $\Rightarrow \ddot{x} + 4\dot{x} + 5x = 5$		E1	-	5
$\frac{x+4x+5x-5}{1}$ iii) $\alpha^2 + 4\alpha + 5 = 0$		M1	Complete argument Auxiliary equation	5
$ \begin{array}{l} \text{III} \end{pmatrix} \alpha +4\alpha + 5 = 0 \\ \Rightarrow \alpha = -2 \pm i \end{array} $		A1	Auxiliary equation	
$\rightarrow a - 2 \pm i$		M1	CF for complex roots	
CF $e^{-2t}(A\cos t + B\sin t)$		F1	CF for their roots	
PI $x = \frac{5}{5} = 1$		B1		
GS $x=1+e^{-2t}(A\cos t+B\sin t)$		F1	GS = PI + CF with two arbitrary constants	6
$(iv) y = -3x + 7 - \dot{x}$		M1	y in terms of x, \dot{x}	-
$\dot{x} = -2e^{-2t}(A\cos t + B\sin t) + e^{-2t}(-A\sin t + B\cos t)$	$\cos t$)	M1	Differentiate their <i>x</i> (product rule)	
$y = 4 + e^{-2t} ((A - B)\sin t - (A + B)\cos t)$		A1	Constants must correspond	3
1 + A = 4		M1	Use condition on x	
4 - A - B = 0 4 - 2 - B = 1		M1	Use condition on <i>y</i>	
A = 3, B = 1 $x = 1 + e^{-2t} (3\cos t + \sin t)$				
$y = 4 + e^{-2t} (2\sin t - 4\cos t)$		A1	Both solutions	3
$y = 4 + e^{-(2 \sin t - 4 \cos t)}$ (vi)		B1	(0, 4)	3
		B1 B1	$(0, 4) \rightarrow 1$	
4		וט	/ 1	
1		B1	(0, 0)	
		B1	$\rightarrow 4$	
As the solutions approach the asymptotes, the		B1	Must refer to gradients	
gradients approach zero.				

4761 Mechanics 1

Q 1		Mark	Comment	Sub
(i)	6 m s^{-1} 4 m s ⁻²	B1 B1	Neglect units. Neglect units.	2
(ii)	$v(5) = 6 + 4 \times 5 = 26$ $s(5) = 6 \times 5 + 0.5 \times 4 \times 25 = 80$ so 80 m	B1 M1 A1	Or equiv. FT (i) and their $v(5)$ where necessary. cao	3
(iii)	distance is $80 + 26 \times (15 - 5) + 0.5 \times 3 \times (15 - 5)^2$ = 490 m	M1 M1 A1	Their 80 + attempt at distance with $a = 3$ Appropriate <i>uvast</i> . Allow $t = 15$. FT their v(5). cao	3
		8		

Q 2		Mark	Comment	Sub
(i)		M1	Recognising that areas under graph represent changes in velocity in (i) or (ii) or equivalent <i>uvast</i> .	
	When $t = 2$, velocity is $6 + 4 \times 2 = 14$	Al		2
(ii)	Require velocity of -6 so must inc by -20 $-8 \times (t-2) = -20$ so $t = 4.5$	M1 F1	FT \pm (6 + their 14) used in any attempt at area/ <i>uvast</i> FT their 14 [Award SC2 for 4.5 WW and SC1 for 2.5 WW]	2
		4		

Q 3		Mark	Comment	Sub
(i)	$\mathbf{F} + \begin{pmatrix} -4\\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2\\ 3 \end{pmatrix}$	M1	N2L. $F = ma$. All forces present	
		B1 B1	Addition to get resultant. May be implied. For $\mathbf{F} \pm \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.	
	$\mathbf{F} = \begin{pmatrix} 16\\10 \end{pmatrix}$	A1	SC4 for $\mathbf{F} = \begin{pmatrix} 16\\ 10 \end{pmatrix}$ WW. If magnitude is given, final mark is lost unless vector answer is clearly intended.	
(ii)	$\arctan\left(\frac{16}{10}\right)$	M1	Accept equivalent and FT their F only. Do not accept wrong angle. Accept 360 - $\arctan\left(\frac{16}{10}\right)$	4
	57.994 so 58.0° (3 s. f.)	A1 6	cao. Accept 302° (3 s.f.)	2

	Mark So	cheme January 2	v. myma 20. Sub
	Mark	Comment	Sub
either			
We need $3.675 = 9.8t - 4.9t^2$	*M1	Equating given expression or their attempt at y to ± 3.675 . If they attempt y, allow sign errors, $g = 9.81$ etc. and $u = 35$.	
Solving $4t^2 - 8t + 3 = 0$	M1*	Dependent. Any method of solution of a 3 term quadratic.	
gives $t = 0.5$ or $t = 1.5$	A1 F1	cao. Accept only the larger root given Both roots shown and larger chosen provided both +ve. Dependent on 1 st M1. [Award M1 M1 A1 for 1.5 seen WW]	
or	M1	Complete method for total time from motion in separate parts. Allow sign errors, $g = 9.81$ etc. Allow $u = 35$ initially only.	
Time to greatest height			
$0 = 35 \times 0.28 - 9.8t$ so $t = 1$	A1	Time for 1 st part	
Time to drop is 0.5 total is 1.5 s	A1 A1	Time for 2 nd part cao	
then			
Horiz distance is $35 \times 0.96t$	B1	Use of $x = u \cos \alpha t$. May be implied.	
So distance is $35 \times 0.96 \times 1.5 =$	50.4 m F1	FT their quoted <i>t</i> provided it is positive.	
			6
	6		

Q5		Mark	Comment	Sub
(i)	For the parcel	M1	Applying N2L to the parcel. Correct mass. Allow $F = mga$. Condone missing force but do not allow spurious forces.	
	↑ N2L 55 – 5g = 5a a = 1.2 so 1.2 m s ⁻²	A1 A1	Allow only sign error(s). Allow –1.2 only if sign convention is clear.	3
(ii)	$R - 80g = 80 \times 1.2$ or $R - 75g - 55 = 75 \times 1.2$ R = 880 so 880 N	M1 A1	N2L. Must have correct mass. Allow only sign errors. FT their <i>a</i> cao [NB beware spurious methods giving 880 N]	2
		5		2

		Mark S	Scheme January 2	2017
5		Mark	Comment	Sub
	Method 1			
	$\uparrow v_{\rm A} = 29.4 - 9.8T \qquad \downarrow v_{\rm B} = 9.8T$	M1	Either attempted. Allow sign errors and $g = 9.81$ etc	
		A1	Both correct	
	For same speed $29.4 - 9.8T = 9.8T$	M1	Attempt to equate. Accept sign errors and $T = 1.5$ substituted in both.	
	so $T = 1.5$	E1	If 2 subs there must be a statement about equality	
	and $V = 14.7$	F1	FT T or V, whichever is found second	
	$H = 29.4 \times 1.5 - 0.5 \times 9.8 \times 1.5^{2}$ + 0.5 \times 9.8 \times 1.5^{2}	M1	Sum of the distance travelled by each attempted	
	= 44.1	A1	cao	
	Method 2			
	$V^{2} = 29.4^{2} - 2 \times 9.8 \times x = 2 \times 9.8 \times (H - x)$	M1	Attempts at V^2 for each particle equated. Allow sign errors, 9.81 etc Allow h_1 , h_2 without $h_1 = H - h_2$	
		B1	Both correct. Require $h_1 = H - h_2$ but not an	
			equation.	
	$29.4^2 = 19.6H$ so $H = 44.1$	A1	cao	
	Relative velocity is 29.4 so	M1	Any method that leads to T or V	
	$T = \frac{44.1}{29.4}$	E1		
	Using $v = u + at$	M1	Any method leading to the other variable	
	$V = 0 + 9.8 \times 1.5 = 14.7$	F1	,	
			Other approaches possible. If 'clever' ways seen, reward according to weighting above.	
				7
		7		

Diagram Resolve $\rightarrow 121 \cos 34 - F = 0$ F = 100.313 so 100 N (3 s. f.) Resolve $\uparrow R + 121 \sin 34 - 980 = 0$ R = 912.337 so 912 N (3 s. f.)	Mark B1 B1 M1 E1 M1 B1	cheme January 2 Comment January 2 Weight, friction and 121 N present with arrows. All forces present with suitable labels. Accept W , mg, 100g and 980. No extra forces. Resolving horiz. Accept $s \leftrightarrow c$. Some evidence required for the <i>show</i> , e.g. at least 4 figures. Accept \pm .	Sub
Resolve $\rightarrow 121 \cos 34 - F = 0$ F = 100.313 so 100 N (3 s. f.) Resolve $\uparrow R + 121 \sin 34 - 980 = 0$ R = 912.337 so 912 N (3 s. f.)	B1 M1 E1 M1	All forces present with suitable labels. Accept W , mg, 100g and 980. No extra forces. Resolving horiz. Accept $s \leftrightarrow c$. Some evidence required for the <i>show</i> , e.g. at least	
F = 100.313 so 100 N (3 s. f.) Resolve $\uparrow R + 121 \sin 34 - 980 = 0$ R = 912.337 so 912 N (3 s. f.)	E1 M1	Some evidence required for the show, e.g. at least	
<i>R</i> = 912.337 so 912 N (3 s. f.)			
	A1	Resolve vert. Accept $s \leftrightarrow c$ and sign errors. All correct	_
It will continue to move at a constant speed of 0.5 m s^{-1} .	E1 E1	Accept no reference to direction Accept no reference to direction [Do not isw: conflicting statements get zero]	7
Using N2L horizontally $155\cos 34 - 95 = 100a$	M1	Use of N2L. Allow $F = mga$, F omitted and 155 not resolved.	
a = 0.335008 so 0.335 m s ⁻² (3 s. f.)	A1 A1	Use of $F = ma$ with resistance and T resolved. Allow $s \leftrightarrow c$ and signs as the only errors.	3
$a = 5 \div 2 = 2.5$	M1 A1	Attempt to find <i>a</i> from information	
N2L down the slope $100g \sin 26 - F = 100 \times 2.5$	M1	F = ma using their "new" <i>a</i> . All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors.	
	B1	Weight term resolved correctly, seen in an equn or on a diagram.	
<i>F</i> = 179.603 so 180 N (3 s. f.)	A1	cao. Accept – 180 N if consistent with direction of F on their diagram	

476 1	I N	/lark S	Scheme January 2	20, no
			Scheme January 2	
Q8		Mark	Comment	Sub
(i)	0.4		- 14 - Differentiating	
	$v_x = 8 - 4t$	M1	either Differentiating	
		A1	or Finding 'u' and 'a' from x and use of $v = u + at$	
	$v_x = 0 \Leftrightarrow t = 2$ so at $t = 2$	F1	FT their $v_x = 0$	
	x			3
ii)				
	$y = \int \left(3t^2 - 8t + 4\right) \mathrm{d}t$	M1	Integrating v_y with at least one correct integrated	
			term.	
	$=t^{3}-4t^{2}+4t+c$	A1	All correct. Accept no arbitrary constant.	
	y = 3 when $t = 1$ so $3 = 1 - 4 + 4 + c$	M1	Clear evidence	
	so $c = 3 - 1 = 2$ and $y = t^3 - 4t^2 + 4t + 2$	E1	Clearly shown and stated	
iii)		<u> </u>		4
III <i>)</i>	We need $x = 0$ so $8t - 2t^2 = 0$	M1	May be implied.	
	so $t = 0$ or $t = 4$	A1	Must have both	
	t = 0 gives $y = 2$ so 2 m	A1	Condone 2j	
	$t = 4$ gives $y = 4^3 - 4^3 + 16 + 2 = 18$ so 18	A1	Condone 18j	
	m			4
v)				4
.,	We need $v_x = v_y = 0$	M1	either Recognises $v_x = 0$ when $t = 2$	
	~ ,		or Finds time(s) when $v_v = 0$	
			,	
	From above $y = 0$ only when $t = 2$ so	M1	or States or implies $v_x = v_y = 0$	
	From above, $v_x = 0$ only when $t = 2$ so	1011	Considers $v_x = 0$ and $v_y = 0$ with their time(s)	
	evaluate $v_y(2)$			
	$v_y(2) = 0$ [(t-2) is a factor] so yes only			
	at $t = 2$	A1	t = 2 recognised as only value (accept as evidence	
			only	
			t = 2 used below). For the last 2 marks, no credit lost for reference	
			to $t = \frac{2}{3}$.	
	At $t = 2$, the position is $(8, 2)$	B1	May be implied	
	Distance is $\sqrt{8^2 + 2^2} = \sqrt{68}$ m (8.25 3 s.f.)	B1	FT from their position. Accept one position	
			followed through correctly.	
				5
V)				1
	t = 0, 1 give $(0, 2)$ and $(6, 3)$	B1	At least one value $0 \le t < 2$ correctly calc. This	
			need not be plotted	
		B1	Must be <i>x</i> - <i>y</i> curve. Accept sketch. Ignore curve	
			outside interval for <i>t</i> .	
			Accept unlabelled axes. Condone use of line	
			segments.	
		B1	At least three correct points used in <i>x</i> - <i>y</i> graph or	
			sketch. General shape correct. Do not condone	
			use of line segments.	
				3
		19		+

January 20. Tains cloud.com

4762 Mechanics 2

Q 1		Mark		Sub
(i)	either	M1	Use of $I = Ft$	
	$m \times 2u = 5F$	A1	Use of $I - Ft$	
	so $F = 0.4mu$ in direction of the velocity or	A1	Must have reference to direction. Accept diagram.	
		M1	Use of suvat and N2L	
	$a = \frac{2u}{5}$	A1	May be implied	
	so $F = 0.4mu$ in direction of the velocity	A1	Must have reference to direction. Accept diagram.	3
(ii)		M1	For 2 equns considering PCLM, NEL or Energy	5
	$PCLM \rightarrow 2um + 3um = mv_P + 3mv_Q$			
	$\text{NEL} \rightarrow v_Q - v_P = 2u - u = u$			
	Energy $\frac{1}{2}m \times (2u)^2 + \frac{1}{2}(3m) \times u^2$			
	$= \frac{1}{2}m \times v_{\rm p}^{2} + \frac{1}{2}(3m) \times v_{\rm Q}^{2}$			
		A1 A1	One correct equation Second correct equation	
	Solving to get both velocities	M1	Dep on 1 st M1. Solving pair of equations.	
	$v_{Q} = \frac{3u}{2}$	E1	If Energy equation used, allow 2 nd root discarded	
	- 2		without comment.	
	$v_p = \frac{u}{2}$	A1		
	2		[If AG subst in one equation to find other velocity,	
			and no more, max SC3]	6
(iii)	either			0
	After collision with barrier $v_Q = \frac{3eu}{2} \leftarrow$	B1	Accept no direction indicated	
	so $\rightarrow m\frac{u}{2} - 3m\frac{3eu}{2} = -4m\frac{u}{4}$	M1	PCLM	
		A1	LHS Allow sign errors. Allow use of $3mv_Q$.	
		A1	RHS Allow sign errors	
	so $e = \frac{1}{3}$	A1		
	At the barrier the impulse on Q is given by			
	$\rightarrow 3m\left(-\frac{3u}{2}\times\frac{1}{3}-\frac{3u}{2}\right)$	M1	Impulse is $m(v-u)$	
		F1	$\pm \frac{3u}{2} \times \frac{1}{3}$	
	so impulse on Q is $-6mu \rightarrow$	F1	Allow \pm and direction not clear. FT only <i>e</i> .	
	so impulse on the barrier is $6mu \rightarrow$	A1	cao. Direction must be clear. Units not required.	9
		18		

			www.	W. Mymains 20. nainscioud.	
4762	<u>?</u>	lark S	Scheme January	20. athscloud	
Q 1	continued	mark		sub	COD
(iii)	or After collision with barrier $v_Q = \frac{3eu}{2} \leftarrow$	B1			1
	Impulse – momentum overall for Q				
	$\rightarrow 2mu + 3mu + I = -4m \times \frac{u}{4}$	M1	All terms present		
	$I = -6mu$ so impulse of $6mu$ on the barrier \rightarrow	A1 A1 A1	All correct except for sign errors Direction must be clear. Units not required.		
	Consider impact of Q with the barrier to give speed $v_{\rm Q}$ after impact				
	$\rightarrow \frac{3u}{2} \times 3m - 6mu = 3mv_Q$	M1	Attempt to use I - M		
		F1			
	so $v_Q = -\frac{u}{2}$	F1			
	$e = \frac{u}{2} \div \frac{3u}{2} = \frac{1}{3}$	A1	cao		
				9	

1762	2 M	lark So	cheme January 2	20. ng
2		Mark		Sub
i)				
	$R = 80g\cos\theta$ or $784\cos\theta$	B1	Seen	
	$F_{\rm max} = \mu R$	M1		
	so $32g\cos\theta$ or $313.6\cos\theta$ N	A1		
)				3
)	Distance is 1.25	D1		
	Distance is $\frac{1.25}{\sin\theta}$	B1		
	WD is $F_{max} d$	M1		
	so $32g\cos\theta \times \frac{1.25}{\sin\theta}$	E1	Award for this or equivalent seen	
	$=\frac{392}{}$			
	$=\frac{1}{\tan\theta}$			
				3
ii)	Δ GPE is mgh	M1		
	so $80 \times 9.8 \times 1.25 = 980$ J	Al	Accept 100g J	
				2
v)	either			
	P = Fv	M1		
	so $(80g\sin 35 + 32g\cos 35) \times 1.5$	B1	Weight term	
		A1	All correct	
	= 1059.85 so 1060 W (3 s. f.)	A1	cao	
	or $P = \frac{WD}{V}$			
	$P = \frac{1}{\Delta t}$	M1		
	so $\frac{980 + \frac{392}{\tan 35}}{\frac{392}{\tan 35}}$			
	so $\frac{1}{(1.25)}$	B1	Numerator FT their GPE	
	$\left(\frac{1.25}{\sin 35}\right) \div 1.5$	B1	Denominator	
	$(\sin 35)$ = 1059.85 so 1060 W (3 s. f.)	A1	cao	
	1057.05 30 1000 W (5 3. 1.)	711		4
v)	either	2.41		
	Using the W-E equation	M1	Attempt speed at ground or dist to reach required speed. Allow only init KE omitted	
	$(1)^2$ 392			
	$0.5 \times 80 \times v^2 - 0.5 \times 80 \times \left(\frac{1}{2}\right)^2 = 980 - \frac{392}{\tan 35}$	B1	KE terms. Allow sign errors. FT from (iv).	
	(B1	Both WD against friction and GPE terms. Allow	
			sign errors. FT from parts above.	
	y = 3.2703 so yes	A1 A1	All correct CWO	
	v = 3.2793 so yes	AI		
	N2L down slope	M1	All forces present	
	a = 2.409973	A1		
	distance slid, using <i>uvast</i> is 1.815372 vertical distance is 1.815372× sin35	A1 M1	valid comparison	
	= 1.0412 < 1.25 so yes	A1	CWO	
		1	1	5

			m	1. M. 14	
4762	2 N	Mark S	Scheme January 2	20. Sub	55 (A)
Q 3		Mark		Sub	.00
(i)		M1 B1 M1	Total mass correct $15\cos\alpha$ or $15\sin\alpha$ attempted either part		
	$\overline{y}: 250 \times 4 + 125 \left(8 + \frac{30}{2} \cos \alpha\right) = 375 \overline{y}$	B1	$\left(\frac{8+\frac{30}{2}\cos\alpha}{2}\right)$		
 	$\overline{y} = \frac{28}{3} = 9\frac{1}{3}$	B1 E1	250×4 Accept any form		
	$\overline{z}: (250 \times 0+) \ 125 \times \frac{30}{2} \sin \alpha = 375\overline{z}$	B1	LHS		
	$\overline{z} = 3$	E1		8	
(ii)	Yes. Take moments about CD. c.w moment from weight; no a.c moment from	E1			
ļ	table	E1	[Award E1 for $9\frac{1}{3} > 8$ seen or 'the line of action		
			of the weight is outside the base]	2	
(iii)	c.m. new part is at (0, 8 + 20, 15)	M1 M1	Either <i>y</i> or <i>z</i> coordinate correct Attempt to 'add' to (i) or start again. Allow mass error.		
ļ	$375 \times \frac{28}{3} + 125 \times 28 = 500\overline{y}$ so $\overline{y} = 14$	E1			
	$375 \times 3 + 125 \times 15 = 500\overline{z}$ so $\overline{z} = 6$	E1		4	
(iv)	Diagram	B1 B1	Roughly correct diagram Angle identified (may be implied)		
	Angle is $\arctan \frac{6}{14}$	M1	Use of tan. Allow use of 14/6 or equivalent.		
	= 23.1985 so 23.2° (3 s. f.)	A1	cao	4	
		18			

4762	N	Nark S	Scheme January 2	V. Mymainsciou
Q 4		mark		sub
(a) (i)	Let the \uparrow forces at P and Q be $R_{\rm p}$ and $R_{\rm Q}$ c.w. moments about P $2 \times 600 - 3R_{Q} = 0$ so force of 400 N \uparrow at Q a.c. moments about Q or resolve $R_{\rm p} = 200$ so force of 200 N \uparrow at P	M1 A1 M1 A1	Moments taken about a named point.	
	$R_{\rm p} = 0$ c.w. moments about Q $2L - 1 \times 600 = 0$ so $L = 300$	B1 M1 A1	Clearly recognised or used. Moments attempted with all forces. Dep on $R_p = 0$ or R_p not evaluated.	3
	$\cos \alpha = \frac{15}{17} \text{ or } \sin \alpha = \frac{8}{17} \text{ or } \tan \alpha = \frac{8}{15}$ c.w moments about A $16 \times 340 \cos \alpha - 8R = 0$ so $R = 600$	B1 M1 A1 E1	Seen here or below or implied by use. Moments. All forces must be present and appropriate resolution attempted. Evidence of evaluation.	4
	Diagram (Solution below assumes all internal forces set as tensions)	B1 B1	Must have 600 (or <i>R</i>) and 340 N and reactions at A. All internal forces clearly marked as tension or thrust. Allow mixture. [Max of B1 if extra forces present]	
	B ↓ 340 cos α + $T_{\rm BC}$ cos α = 0 so $T_{\rm BC}$ = -340 (Thrust of) 340 N in BC C → $T_{\rm BC}$ sin α - $T_{\rm AC}$ sin α = 0 so $T_{\rm AC}$ = -340 (Thrust of) 340 N in AC	M1 A1 F1	Equilibrium at a pin-joint	2
	B ← $T_{AB} + T_{BC} \sin \alpha - 340 \sin \alpha = 0$ so $T_{AB} = 320$ (Tension of) 320 N in AB Tension/ Thrust all consistent with working	M1 A1 F1	Method for T_{AB} [Award a max of 4/6 if working inconsistent with diagram]	6
		19		<u> </u>

4763 Mechanics 3

			1
1 (i)	$[Force] = MLT^{-2}$	B1	
	$[\text{Density}] = M L^{-3}$	B1	
		,	2
(ii)	$[m]_{-}$ [F][d] _ (MLT ⁻²)(L)	B1	for $[A] = L^2$ and $[v] = LT^{-1}$
	$[\eta] = \frac{[F][d]}{[A][v_2 - v_1]} = \frac{(MLT^{-2})(L)}{(L^2)(LT^{-1})}$	M1	Obtaining the dimensions of η
	$= M L^{-1} T^{-1}$	A1	obtaining the dimensions of η
			3
(iii)	$\begin{bmatrix} 2a^2\rho g \end{bmatrix} L^2 (ML^{-3})(LT^{-2})$	B1	For $[g] = LT^{-2}$
	$\left[\frac{2a^{2}\rho g}{9\eta}\right] = \frac{L^{2} (M L^{-3})(L T^{-2})}{M L^{-1} T^{-1}} = L T^{-1}$	M1	Simplifying dimensions of RHS
	which is same as the dimensions of v	E1	Correctly shown
		Í	3
(iv)	$(ML^{-3})L^{\alpha}(LT^{-1})^{\beta}(ML^{-1}T^{-1})^{\gamma}$ is dimensionless		
	$\gamma = -1$	B1 cao	
	$-eta-\gamma=0$	M1	
	$-3 + \alpha + \beta - \gamma = 0$	M1A1	
	$\alpha = 1, \beta = 1$	A1 cao	
			5
(v)	$R = \frac{\rho wv}{\eta} = \frac{0.4 \times 25 \times 150}{1.6 \times 10^{-5}} (=9.375 \times 10^7)$	M1	Evaluating <i>R</i>
	$=\frac{1.3\times5v}{1.8\times10^{-5}}$	A1	Equation for <i>v</i>
	Required velocity is 260 ms^{-1}	A1 cao	3
			,

				www.mys	12
4763	Mark Sc	heme		January 20.	The star
2 (a)(i)	$T\cos\alpha = T\cos\beta + 0.27 \times 9.8$	M1 A1		Resolving vertically (weight and at least one resolved tension) Allow T_1 and T_2	cloud.co.
	$\sin \alpha = \frac{1.2}{2.0} = \frac{3}{5}, \ \cos \alpha = \frac{4}{5} \ (\alpha = 36.87^{\circ})$ $\sin \beta = \frac{1.2}{1.3} = \frac{12}{13}, \ \cos \beta = \frac{5}{13} \ (\beta = 67.38^{\circ})$ $\frac{27}{1.3} = \frac{12}{1.3} = \frac{12}{13}, \ \cos \beta = \frac{5}{13} = \frac{12}{13}$	В1		For $\cos \alpha$ and $\cos \beta$ [or α and β]	
	$\frac{27}{65}T = 2.646$ Tension is 6.37 N	M1		Obtaining numerical equation for T e.g. $T(\cos 36.9 - \cos 67.4) = 0.27 \times 9.8$	
		E1	5	(Condone 6.36 to 6.38)	
(ii)	2	M1		Using $v^2/1.2$	
	$T\sin\alpha + T\sin\beta = 0.27 \times \frac{v^2}{1.2}$	A1	ļ	Allow T_1 and T_2	
	$6.37 \times \frac{3}{5} + 6.37 \times \frac{12}{13} = 0.27 \times \frac{v^2}{1.2}$ $v^2 = 43.12$	M1		Obtaining numerical equation for v^2	
	Speed is 6.57 m s^{-1}	A1	4		
(b)(i)	$0.2 \times 9.8 = 0.2 \times \frac{u^2}{1.25}$ $u^2 = 9.8 \times 1.25 = 12.25$	M1		Using acceleration $u^2/1.25$	
	Speed is 3.5 ms^{-1}	E1	2		
(ii)	$\frac{1}{2}m(v^2 - 3.5^2) = mg(1.25 - 1.25\cos 60)$ $v^2 = 24.5$	M1 A1		Using conservation of energy	
	Radial component is $\frac{24.5}{1.25}$ = 19.6 m s ⁻² Tangential component is $g \sin 60$	M1 A1		With numerical value obtained by using energy (M0 if mass, or another term, included)	
	$= 8.49 \text{ m s}^{-2}$	M1 A1	6	For sight of $(m)g\sin 60^\circ$ with no other terms	
(iii)	$T + 0.2 \times 9.8 \cos 60 = 0.2 \times 19.6$ Tension is 2.94 N	M1 A1 cao	2	Radial equation (3 terms) This M1 can be awarded in (ii)	

4763	Mark Schei	me	Using $\frac{\lambda y}{l_0}$ (Allow M1 for 080y = mg)
3 (i)	$\frac{980}{25}y = 5 \times 9.8$ Extension is 1.25 m	M1 A1	Using $\frac{\lambda y}{l_0}$ (Allow M1 for 980y = mg) 2
(ii)	$T = \frac{980}{25}(1.25 + x)$ $5 \times 9.8 - 39.2(1.25 + x) = 5\frac{d^2x}{dt^2}$ $-39.2x = 5\frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} = -7.84x$	B1 (ft) M1 F1 E1	(ft) indicates ft from previous parts as for A marks Equation of motion with three terms Must have \ddot{x} In terms of x only 4
(iii)	$8.4^2 = 7.84(A^2 - 1.25^2)$ Amplitude is 3.25 m	M2 A1 A1	4 Using $v^2 = \omega^2 (A^2 - x^2)$
	OR M2 $\frac{980}{2 \times 25} y^2 = 5 \times 9.8 y + \frac{1}{2} \times 5 \times 8.4^2$ A1 y = 4.5 Amplitude is $4.5 - 1.25 = 3.25$ m A1		Equation involving EE, PE and KE
	OR $x = A \sin 2.8t + B \cos 2.8t$ x = -1.25, v = 8.4 when $t = 0\Rightarrow A = 3, B = -1.25Amplitude is \sqrt{A^2 + B^2} = 3.25A1$		Obtaining A and B Both correct
(iv)	Maximum speed is $A\omega = 3.25 \times 2.8$ = 9.1 m s ⁻¹	M1 A1	or equation involving EE, PE and KE ft only if answer is greater than 8.4
(v)	$x = 3.25 \cos 2.8t$	B1 (ft)	or $x = 3.25 \sin 2.8t$ or $v = 9.1 \cos 2.8t$ or $v = 9.1 \sin 2.8t$ or $x = 3.25 \sin(2.8t + \varepsilon)$ etc or $x = \pm 3 \sin 2.8t \pm 1.25 \cos 2.8t$
	$-1.25 = 3.25 \cos 2.8t$	M1 M1	Obtaining equation for <i>t</i> or ε by setting $x = (\pm)1.25$ or $v = (\pm)8.4$ or solving $\pm 3 \sin 2.8t \pm 1.25 \cos 2.8t = 3.25$ Strategy for finding the required time
	Time is 0.702 s	A1 cao	$e.g. \frac{1}{2.8} \sin^{-1} \frac{1.25}{3.25} + \frac{1}{4} \times \frac{2\pi}{2.8}$ $2.8t - 0.3948 = \frac{1}{2}\pi \text{ or}$ 2.8t - 1.966 = 0

4763	Mark Scher	me	January 20, Three modelling assumptions
(vi)	e.g. Rope is light Rock is a particle No air resistance / friction / external forces Rope obeys Hooke's law / Perfectly elastic / Within elastic limit / No energy loss in rope	B1B1B1 3	Three modelling assumptions
4 (a)	$\int \frac{1}{2} y^2 dx = \int_{-a}^{a} \frac{1}{2} (a^2 - x^2) dx$ $= \left[\frac{1}{2} (a^2 x - \frac{1}{3} x^3) \right]_{-a}^{a}$	M1	For integral of $(a^2 - x^2)$
	$= \frac{2}{3}a^{3}$ $\overline{y} = \frac{\frac{2}{3}a^{3}}{\frac{1}{2}\pi a^{2}}$ $= \frac{4a}{3\pi}$	A1 M1	Dependent on previous MI
	5/4	E1 4	
(b)(i)	$V = \int \pi y^2 dx = \int_0^h \pi(mx)^2 dx$ $= \left[\frac{1}{3} \pi m^2 x^3 \right]_0^h = \frac{1}{3} \pi m^2 h^3$	M1 A1	π may be omitted throughout For integral of x^2 or use of $V = \frac{1}{3}\pi r^2 h$ and $r = mh$
	$\int \pi x y^2 dx = \int_0^h \pi x (mx)^2 dx$ $= \left[\frac{1}{4} \pi m^2 x^4 \right]_0^h = \frac{1}{4} \pi m^2 h^4$	M1	For integral of x^3
	$= \left[\frac{1}{4} \pi m^{2} x \right]_{0} = \frac{1}{4} \pi m^{2} n^{4}$ $\overline{x} = \frac{\frac{1}{4} \pi m^{2} h^{4}}{\frac{1}{3} \pi m^{2} h^{3}}$ $= \frac{3}{4} h$	A1 M1 E1 6	Dependent on M1 for integral of x^3
(ii)	$m_{1} = \frac{1}{3}\pi \times 0.7^{2} \times 2.4\rho = \frac{1}{3}\pi\rho \times 1.176$ $VG_{1} = 1.8$ $m_{2} = \frac{1}{3}\pi \times 0.4^{2} \times 1.1\rho = \frac{1}{3}\pi\rho \times 0.176$ $VG_{2} = 1.3 + \frac{3}{4} \times 1.1 = 2.125$	B1 B1	For m_1 and m_2 (or volumes) or $\frac{1}{4} \times 1.1$ from base
	$(m_1 - m_2)(VG) + m_2(VG_2) = m_1(VG_1)$ (VG) + 0.176 × 2.125 = 1.176 × 1.8 Distance (VG) is 1.74 m	M1 F1 A1 5	Attempt formula for composite body
(iii)	VQG is a right-angle VQ = VG cos θ where tan $\theta = \frac{0.7}{2.4}$ ($\theta = 16.26^{\circ}$)	M1 M1	
	$VQ = 1.7428 \times \frac{24}{25}$ = 1.67 m	A1 3	ft is VG \times 0.96

January 20. Mains Cloud. com

4766 Statistics 1

Section A

$(W') = \sum_{i=1}^{n} \int_{-\infty}^{\infty} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n}$		
(With $\sum fx = 7500$ and $\sum f = 10000$ then arriving at the		
mean)		
(i) £0.75 scores (B1, B1)	B1 for numerical mean	
(ii) 75p scores (B1, B1)	(0.75 or 75 seen)	
(iii) 0.75p scores (B1, B0) (incorrect units)	B1dep for correct units attached	
(iv) £75 scores (B1, B0) (incorrect units)	attached	
<u>After B0, B0</u> then sight of $\frac{7500}{10000}$ scores SC1. SC1or an answer		
in the range $\pounds 0.74 - \pounds 0.76$ or $74p - 76p$ (both inclusive) scores		
SC1 (units essential to gain this mark)		
Standard Deviation: (CARE NEEDED here with close proximity	B2 correct s.d.	
of answers)	(B1) correct rmsd	
• 50.2(0) using divisor 9999 scores B2 (50.20148921)		
• 50.198 (= 50.2) using divisor 10000 scores B1(<i>rmsd</i>)	(B2) default	
• If divisor is <u>not</u> shown (or calc used) and only an answer	(D2) deladit	
of 50.2 (i.e. not coming from 50.198) is seen then award		
B2 on b.o.d. (default)		
<u>After B0 scored</u> then an attempt at S_{xx} as evident by either	$\sum fx^2 = 25,205,000$	
$S_{xx} = (5000 + 200000 + 25000000) - \frac{7500^2}{10000} (= 25199375)$	Beware $\sum x^2 = 25,010,100$	
or	After B0 scored then	_
$S_{xx} = (5000 + 200000 + 25000000) - 10000(0.75)^2$	(M1) or M1f.t. for	4
$S_{xx} = (5000 + 200000 + 25000000) = 10000(0.75)$	attempt at S_{xx}	
scores (M1) or M1ft 'their 7500 ² ' or 'their 0.75 ² '	NB full marks for correct	
NB The <u>structure</u> must be correct in both above cases with a max of <u>1 slip only after applying the f.t.</u>	results from recommended method which is use of calculator functions	

4766	Mark Scheme	MMM January 2 M1 for either correct	myma
(ii)	P(Two £10 or two £100) $= \frac{50}{10000} \times \frac{49}{9999} + \frac{20}{10000} \times \frac{19}{9999}$ $= 0.0000245 + 0.0000038 = (0.00002450245 + 0.00000380038)$ $= 0.000028(3) \text{ o.e.} = (0.00002830283)$ $\frac{\text{After M0, M0}}{10000} \text{ then } \frac{50}{10000} \times \frac{50}{10000} + \frac{20}{10000} \times \frac{20}{10000} \text{ o.e.}$ Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9 × 10 ⁻⁵ o.e.) Similarly, $\frac{50}{10000} \times \frac{49}{10000} + \frac{20}{10000} \times \frac{19}{10000} \text{ scores SC1}$	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case #1) (SC1 case #2) <u>CARE</u> answer is also 2.83×10^{-5}	3
		TOTAL	7
Q2 i)	Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$ or P(all correct) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$	M1 for 6! Or 720 (sioc) or product of fractions A1 CAO (accept 0.0014)	2
(ii)	Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ or P(picks T, O, M) = $\frac{1}{\binom{6}{3}} = \frac{1}{20}$	M1 for denominators M1 for numerators or 3! A1 CAO Or M1 for $\binom{6}{3}$ or 20 <u>sioc</u> M1 for $1/\binom{6}{3}$ A1 CAO	3
		TOTAL	5
23 i) ii)	p = 0.55 E(X) = $0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$	B1 cao M1 for Σrp (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors)	1
	$E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ = 0 + 0.1 + 0.2 + 0.45 + 4 = (4.75)	M1 for $\Sigma r^2 p$ (at least 3 non zero terms correct) M1dep for – their E(X) ² provided Var(X) > 0	
	$Var(X) =$ 'their' $4.75 - 1.35^2 = 2.9275$ awfw (2.9275 - 2.93)	A1 cao (no 'n' or 'n-1' divisors)	5
(iii)	P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.	M1 for $(0.05+0.05+0.25)^2$ or 0.35^2 seen A1cao: awfw $(0.1225 - 0.122)$ or $40(400)$	2
		0.123) or 49/400 TOTAL	<u>2</u> 8

4766	Mark Scheme	M1 0.03×0.97^{49} or	Myman 0	My Mains
Q4	$X \sim B(50, 0.03)$			*0.00
(i)	(A) $P(X = 1) = {\binom{50}{1}} \times 0.03 \times 0.97^{49} = 0.3372$	M1 0.03×0.97^{49} or $0.0067(4)$		
	(1) (B) $P(X = 0) = 0.97^{50} = 0.2181$ P(X > 1) = 1 - 0.2181 - 0.3372 = 0.4447	M1 $\binom{50}{1} \times pq^{49}$ (p+q =1) A1 CAO (awfw 0. 337 to 0. 3372) or 0.34(2s.f.) or 0.34(2d.p.) but not just 0.34 B1 for 0.97 ⁵⁰ or 0.2181 (awfw 0.218 to 0.2181) M1 for 1 - ('their' p (X = 0) + 'their' p(X = 1)) must have both probabilities A1 CAO	3	
(ii)	Expected number = $np = 240 \times 0.3372 = 80.88 - 80.93 = (81)$	(awfw 0.4447 to 0.445) M1 for 240× prob (A)	2	
	Condone $240 \times 0.34 = 81.6 = (82)$ but for M1 Alf.t.	A1FT TOTAL	- 8	
Q5 (i)	P(R) × P(L) = $0.36 \times 0.25 = 0.09 \neq P(R \cap L)$ Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 $\neq 0.2$ or $\neq p(R \cap L)$ so not independent)	M1 for 0.36×0.25 or 0.09 seen A1 (numerical justification needed)	2	
(ii)	R (.16 (0.2) 0.05 0.59	 G1 for two overlapping circles labelled G1 for 0.2 and either 0.16 or 0.05 in the correct places G1 for all 4 correct probs in the correct places (including the 0.59) The last two G marks are independent of the labels 	3	
(iii)	$P(L \mid R) = \frac{P(L \cap R)}{P(R)} = \frac{0.2}{0.36} = \frac{5}{9} = 0.556 \text{ (awrt 0.56)}$ This is the probability that Anna is late given that it is raining. (must be in context) Condone 'if' or 'when' or 'on a rainy day' for 'given that' but <u>not</u> the words 'and' or 'because' or 'due to'	M1 for 0.2/0.36 o.e. A1 cao E1 (indep of M1A1) Order/structure <u>must</u> be correct i.e. no reverse statement	3	
		TOTAL	8	

4766

Mark Scheme

Section B

4766		January	w.nyma
Secti	on B		
Q6 (i)	Median = $4.06 - 4.075$ (inclusive) Q ₁ = 3.8	B1cao B1 for Q_1 (cao)	
	$Q_3 = 4.3$	B1 for Q_3 (cao)	
	Inter-quartile range = $4.3 - 3.8 = 0.5$	B1 ft for IQR must be using t-values not locations to earn this mark	4
(ii)	Lower limit ' their $3.8' - 1.5 \times$ 'their $0.5' = (3.05)$ Upper limit ' their $4.3' + 1.5 \times$ 'their $0.5' = (5.05)$ Very few if any temperatures <u>below 3.05 (but not zero)</u> None <u>above 5.05</u> 'So few, if any outliers' scores SC1	B1ft: must have -1.5 B1ft: must have +1.5 E1ft dep on -1.5 and Q_1 E1ft dep on+1.5 and Q_3	
		Again, must be using t- values NOT locations to earn these 4 marks	4
(iii)	Valid argument such as 'Probably not, because there is nothing to suggest that they are not genuine data items; (they do not appear to form a separate pool of data.') Accept: exclude outlier – 'measuring equipment was wrong' or 'there was a power cut' or ref to hot / cold day [Allow suitable valid alternative arguments]	E1	1
iv)	Missing frequencies 25, 125, 50	B1, B1, B1 (all cao)	3
(v)	$Mean = (3.2 \times 25 + 3.6 \times 125 + 4.0 \times 243 + 4.4 \times 157 + 4.8 \times 50)/600$ $= 2432.8/600 = 4.05(47)$	M1 for at least 4 midpoints correct and being used in attempt to find $\sum ft$	2
		A1cao: awfw (4.05 – 4.055) ISW or rounding	
(vi)	New mean = $1.8 \times$ 'their $4.05(47)$ ' + $32 = 39.29(84)$ to 39.3 New s = 1.8×0.379 = 0.682	B1 FT M1 for 1.8 × 0.379 A1 CAO awfw (0.68 – 0.6822)	3
		TOTAL	17

4766	Mark Scheme	January :	M. M
Q7 (i)	$X \sim B(10, 0.8)$ (A) Either $P(X = 8) = {\binom{10}{8}} \times 0.8^8 \times 0.2^2 = 0.3020 \text{ (awrt)}$ or $P(X=8) = P(X \le 8) - P(X \le 7)$ = 0.6242 - 0.3222 = 0.3020 (B) Either $P(X \ge 8) = 1 - P(X \le 7)$ = 1 - 0.3222 = 0.6778 or $P(X \ge 8) = P(X=8) + P(X=9) + P(X=10)$ = 0.3020 + 0.2684 + 0.1074 = 0.6778	M1 $0.8^8 \times 0.2^2$ or 0.00671 M1 $\binom{10}{8} \times p^8 q^2$; (p+q =1) Or 45 $\times p^8 q^2$; (p+q=1) A1 CAO (0.302) not 0.3 OR: M2 for 0.6242 – 0.3222 A1 CAO M1 for 1 – 0.3222 (s.o.i.) A1 CAO awfw 0.677 – 0.678 or M1 for sum of 'their' p(X=8) plus correct expressions for p(x=9) and p(X=10) A1 CAO awfw 0.677 – 0.678	3 2
(ii)	Let $X \sim B(18, p)$ Let $p = \text{probability of delivery (within 24 hours) (for population)}$ $H_0: p = 0.8$ $H_1: p < 0.8$ $P(X \le 12) = 0.1329 > 5\%$ ref: [pp =0.0816] So not enough evidence to reject H_0 Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours Note: use of critical region method scores M1 for region {0,1,2,,9, 10} M1dep for 12 does not lie in critical region then A1dep E1dep as per scheme	 B1 for definition of <i>p</i> B1 for H₀ B1 for H₁ M1 for probability 0.1329 M1dep strictly for comparison of 0.1329 with 5% (seen or clearly implied) A1dep on both M's E1dep on M1,M1,A1 for conclusion in context 	7

		nn	W. MJA
4766	Mark Scheme	January	20 Arits
(iii)	Let $X \sim B(18, 0.8)$ $H_1: p \neq 0.8$ LOWER TAIL $P(X \le 10) = 0.0163 < 2.5\%$ $P(X \le 11) = 0.0513 > 2.5\%$ UPPER TAIL $P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9009 = 0.0991 > 2.5\%$ $P(X \ge 18) = 1 - P(X \le 17) = 1 - 0.9820 = 0.0180 < 2.5\%$ So critical region is {0,1,2,3,4,5,6,7,8,9,10,18} o.e. Condone $X \le 10$ and $X \ge 18$ or $X = 18$ but not p($X \le 10$) and $p(X \ge 18)$ Correct CR without supportive working scores SC2 max after the 1 st B1 (SC1 for each fully correct tail of CR)	 B1 for H₁ B1 for 0.0163 or 0.0513 seen M1 dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied) A1 dep for correct lower tail CR (must have zero) B1 for 0.0991 or 0.0180 seen M1 dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied) A1 dep for correct upper tail CR 	n.n.y.n.ainscioud.com
		TOTAL	19

4767 Statistics 2

Question 1

-											
(i)	x	18	43	52	94	98	206	784	1530	M1 for attempt at ranking	
	v	1.15	0.97	1.26	1.35	1.28	1.42	1.32	1.64	(allow all ranks reversed)	
	Rank x	1	2	3	4	5	6	7	8		
	Rank y	2	1	3	6	4	7	5	8		
	d	-1	1	0	-2	1	-1	2	0	M1 for d^2	
	d^2	1	1	0	4	1	1	4	0	A1 for $\Sigma d^2 = 12$	
										M1 for method for r_s	
		6Σ	d^2	. 6	×12						-
	$r_{s} = 1 - 1$	$\frac{1}{n(n^2)}$	-1)	$=1-\frac{1}{8}$	×63					A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
	= 0	.857 (1	to 3 s.f	2) [<i>a</i>	llow 0.	.86 to 2	2 s.f.]			C	
(ii)											
	H_0 : no as	ssociat	ion be	tween	X and	Y in th	e popu	ilation		B1 for H ₀	
	H ₁ : some	e assoc	iation	betwe	en X a	nd Y ir	the po	opulati	on	B1 for H ₁	
	Two tail t	test cri	tical va	alue at	5% le	vel is	0.7381			B1 for population SOI	
	Since 0.857> 0. 7381, there is sufficient evidence to reject				NB $H_0 H_1 \underline{not}$ ito ρ						
	H ₀ , i.e. conclu	uda the	ot tha a	vidon		xaata tl	not that	ro is		B1 for ± 0.7381	
	associatio								lking	M1 for sensible	
	speed Y.		Ĩ	1				C	C	comparison with c.v.,	
										provided $ r_s < 1$ A1 for conclusion in	6
										words f.t. their r_s and	Ũ
										sensible cv	
(iii)	$\bar{t} = 45, \bar{v}$	_ 	1267							B1 for \overline{t} and \overline{w} used	
						10				(SOI)	
	$b = \frac{Stw}{Stt}$	= 584.0	5 – 270	$) \times 13.4$	$\frac{12/6}{6}$ =	$=\frac{-19}{155}$	$\frac{1.3}{2} = .$	-0.011			
										M1 for attempt at gradient (<i>b</i>)	
	OR $b = \frac{3}{2}$	130	$\frac{6-45}{00/6}$		= .	$\frac{-3.2}{291.6}$	=	-0.01	1		
	hence lea						007			A1 CAO for -0.011	
	ν	$v - \overline{w} =$	= b(t -	(\overline{t})						M1 for equation of line	
	=	$\Rightarrow w -$	2.236	7 = -0	0.011(t - 45)			A1 FT for complete	
	=	$\Rightarrow w =$	-0.01	1t + 2	.73					equation	
											5

4767		Mark Scheme	Januar	y 20.	MM MSEIS INSCIOUSICOM
(iv)					*. COD
	(A)	For $t = 80$, predicted speed			
		$= -0.011 \times 80 + 2.73 = 1.85$	A1 FT provided $b < 0$		
	(<i>B</i>)	The relationship relates to adults, but a ten year old			
		will not be fully grown so may walk more slowly.	E1 extrapolation o.e.		
	NB Al	low E1 for comment about extrapolation not in context	E1 sensible contextual		
		1	comment	4	
			TOTAL	20	

Question 2

(i)	Binomial(5000,0.0001)	B1 for binomial B1 dep, for parameters	2
(ii)	<i>n</i> is large and <i>p</i> is small $\lambda = 5000 \times 0.0001 = 0.5$	B1, B1 (Allow appropriate numerical ranges) B1	3
(iii)	$P(X \ge 1) = 1 - \tilde{e} \frac{0.5^0}{0!} = 1 - 0.6065 = 0.3935$	M1 for correct calculation or correct use of tables A1	2
	or from tables $= 1 - 0.6065 = 0.3935$		
(iv)	$P(9 \text{ of } 20 \text{ contain at least one})$ $= \begin{pmatrix} 20 \\ 9 \end{pmatrix} \times 0.3935^9 \times 0.6065^{11}$ $= 0.1552$	M1 for coefficient M1 for $p^9 \times (1-p)^{11}$, p from part (iii) A1	3
(v)	Expected number = $20 \times 0.3935 = 7.87$	M1 A1 FT	2
(vi)	Mean = $\frac{\Sigma x f}{n} = \frac{7+4}{20} = \frac{11}{20} = 0.55$	B1 for mean	
	Variance = $\frac{1}{n-1} \left(\Sigma f x^2 - n \overline{x}^2 \right)$	M1 for calculation	
	$=\frac{1}{19}(15-20\times0.55^2)=0.471$	A1 CAO	3
(vii)	Yes, since the mean is close to the variance,	B1	
	and also as the expected frequency for 'at least one', i.e. 7.87,	E1 for sensible comparison	
	is close to the observed frequency of 9.	B1 for observed frequency = $7 + 2 = 9$	3
		TOTAL	18

4767	Mark Scheme	hun January 2	N. M.
Question 3			4d.CO
(i) (A) $P(X < 120) = P(Z = P(Z < 0.2146))$ $= \Phi(0.2146) = 0.584$ (B) $P(100 < X < 110) = P(\frac{100 - 115.3}{21.9} < Z < \frac{110}{22})$ = P(-0.6986 < Z < -100) = 0.7577 - 0.5956 = 0.1621 (C) From tables $\Phi^{-1}(0.1) = 100$	$ \frac{-115.3}{21.9} $ -0.2420) 2420)	M1 for standardizing A1 for $z = 0.2146$ A1 CAO (min 3 sf, to include use of difference column)M1 for standardizing both 100 & 110M1 for correct structure in calc ⁿ A1 CAOB1 for ± 1.282 seen M1 for equation in k and	3
$\frac{k-115.3}{21.9} = -1.282$		negative z-value	
$k = 115.3 - 1.282 \times 21.9 = 3$	87.22	A1 CAO	3
(ii) From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.70) = 0.5244, \sigma^{-1}(0.70) = 0.5244 \sigma^{-1}(0.70) = 0.524 \sigma^{-1}$	0.15) = - 1.036	B1 for 0.5244 or ± 1.036 seen M1 for at least one equation in μ and σ and Φ^{-1} value	
$40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$		M1 dep for attempt to solve two equations A1 CAO for both	4
(iii) $\Phi^{-1}(0.975) = 1.96$ $a = 166.55 - 1.96 \times 25.63 =$ $b = 166.55 + 1.96 \times 25.63 =$		B1 for ±1.96 seen M1 for either equation A1 A1 [Allow other correct	4
		intervals] TOTAL	17

4767	tion 4		Mark S	Scheme	January 2	v.nynath	TA HISENS
Ques				~ 4		T1	Con
(i)	H ₀ : no association be H ₁ : some association				B1 (in context)		
	EXPECTED	Good	Average	Poor	M1 A2 for expected		
	Coriander	12.10	24.93	17.97	values (to 2 dp)		
	Aster	10.56	21.76	15.68	(allow A1 for at least		
	Fennel	10.34	21.31	15.35	one row or column		
					correct)		
	CONTRIBUTION	Good	Average	Poor	M1 for valid attempt at		
	Coriander	0.0008	0.3772	0.4899	$(O-E)^2/E$		
	Aster	1.2002	0.6497	3.4172	A1 for all correct		
	Fennel	1.2955	0.0226	1.2344	NB These M1A1 marks cannot be implied by a correct final value of X^2		
	Refer to χ_4^2 Critical value at 5% le Result is not significa There is not enough association between r NB if H ₀ H ₁ reversed, o	ant n evidence to reported grow	o suggest th wth and type	of plant;	B1 for 4 d.o.f. B1 CAO for cv M1 A1	12	
(ii)	B1or final A1				+	$\left - \right $	
(,	Test statistic = $\frac{49.2}{8.5/3}$	$\frac{-47}{\sqrt{50}} = \frac{2.2}{1.202}$	$\frac{-}{2} = 1.830$		M1 correct denominator A1		
	1% level 1 tailed criti 1.830 < 2.326 so not s		z = 2.326		B1 for 2.326 M1 (dep on first M1) for sensible comparison		
	There is not sufficient		reject H ₀		leading to a conclusion		
	There is insufficient larger.	evidence to	conclude the	at the flowers are	A1 for fully correct conclusion in words in context	5	
					TOTAL	17	

January 20. Tains cloud.com

4768 Statistics 3

(a) (i) $\int_{0}^{1} \lambda x^{c} dx = 1$ $\therefore \left[\frac{\lambda x^{c+1}}{c+1} \right]_{0}^{1} = 1$ λ (i) $\int_{0}^{1} \lambda x^{c} dx = 1$ $\therefore \left[\frac{\lambda x^{c+1}}{c+1} \right]_{0}^{1} = 1$ M1 Integration correct and limits use	sibly
$\int_{0}^{1} \lambda x dx = 1$ $\therefore \left[\frac{\lambda x^{c+1}}{c+1}\right]_{0}^{1} = 1$ M1 Integration correct and limits use	sibly
2	d.
$\therefore \frac{\lambda}{c+1} = 1 \qquad \therefore c = \lambda - 1 \qquad A1 \qquad c.a.o.$	3
(ii) $E(X) = \int_{0}^{1} \lambda x^{\lambda} dx$ M1 Correct form of integral for $E(X)$.	
$\begin{bmatrix} \lambda x^{\lambda+1} \end{bmatrix}^{1} \qquad \lambda \qquad $	d.
$= \left[\frac{\lambda x^{\lambda+1}}{\lambda+1}\right]_{0}^{1} = \frac{\lambda}{\lambda+1}.$ A1 Integration correct and limits use ft c's c.	3
(iii) $E(X^2) = \int_0^1 \lambda x^{\lambda+1} dx$ M1 Correct form of integral for $E(X^2)$).
Allow c s expression for c.	
$= \left[\frac{\lambda x^{\lambda+2}}{\lambda+2}\right]_{0}^{1} = \frac{\lambda}{\lambda+2}.$ A1	
$\operatorname{Var}(X) = \frac{\lambda}{\lambda+2} - \left(\frac{\lambda}{\lambda+1}\right)^2 = \frac{\lambda(\lambda+1)^2 - \lambda^2(\lambda+2)}{(\lambda+2)(\lambda+1)^2} \qquad M1 \qquad \text{Use of } \operatorname{Var}(X) = \operatorname{E}(X^2) - \operatorname{E}(X)^2.$ Allow c's E(X ²) and E(X).	
$\lambda^3 + 2\lambda^2 + \lambda - \lambda^3 - 2\lambda^2$ λ A1 Algebra shown convincingly.	4
$= \frac{(\lambda+2)(\lambda+1)^2}{(\lambda+2)(\lambda+1)^2} = \frac{(\lambda+2)(\lambda+1)^2}{(\lambda+2)(\lambda+1)^2}.$ Beware printed answer.	
(b) $\begin{array}{ c c c c c c }\hline Times & -32 & Rank of \\ diff \\\hline 40 & 8 & 4 \\\hline 20 & -12 & 7 \\\hline 18 & -14 & 8 \\\hline 11 & -21 & 12 \\\hline 47 & 15 & 9 \\\hline 36 & 4 & 2 \\\hline \end{array}$	n
<u>38 6 3</u> M1	
35 3 1 22 -10 5 A1 for ranks. ft if ranks wrong. ft if ranks wrong. ft if ranks wrong.	
14 -18 10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$W_{+} = 1 + 2 + 3 + 4 + 9 = 19$ B1 (or $W_{-} = 5 + 6 + 7 + 8 + 10 + 11$ = 59)	+ 12
Refer to Wilcoxon single sample tables for $n = 12$. M1 No ft from here if wrong.	· c
Lower (or upper if 59 used) 5% tail is 17 (or 61 if 59 used). A1 i.e. a 1-tail test. No ft from here i wrong.	I
Result is not significant.A1ft only c's test statistic.	
Seems that there is no evidence that Godfrey's A1 ft only c's test statistic. times have decreased.	8
	18

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4768	3 Mark Sch	neme	January 2	myman 0
i) b) b) <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
= 0.8862 A1 3 ii) $V_T \sim N(56.5 + 38.4 = 94.9, 2.9^2 + 1.1^2 = 9.62)$ P(this > 100) = P($Z > \frac{100 - 94.9}{3.1016} = 1.6443)$ = 1 - 0.9499 = 0.0501 B1 A1 Wean. Variance. Accept sd (= 3.1016). iii) $W_T \sim N(3.1 \times 56.5 + 0.8 \times 38.4 = 205.87, 3.1^2 \times 2.9^2 + 0.8^2 \times 1.1^2 = 81.5945)$ M1 	Q2	$V_G \sim N(56.5, 2.9^2)$ $V_W \sim N(38.4, 1.1^2)$		to use the difference columns of the Normal distribution tables penalise	
$\begin{array}{c c} 2.9^2 + 1.1^2 = 9.62) \\ P(\text{this} > 100) = P(Z > \frac{100 - 94.9}{3.1016} = 1.6443) \\ = 1 - 0.9499 = 0.0501 \end{array} \qquad \text{A1} \qquad \text{Variance. Accept sd} (= 3.1016). \\ \hline P(\text{this} > 100) = P(Z > \frac{100 - 94.9}{3.1016} = 1.6443) \\ = 1 - 0.9499 = 0.0501 \end{array} \qquad \text{A1} \qquad \text{Use of ``mass = density × volume''} \\ \hline \text{A1} \qquad \text{Man.} \\ 3.1^2 \times 2.9^2 + 0.8^2 \times 1.1^2 = 81.5945) \qquad \text{M1} \\ A1 \qquad \text{Variance. Accept sd} (= 9.0330). \\ P(200 < \text{this} < 220) \\ = P(\frac{200 - 205.87}{9.0330} < Z < \frac{220 - 205.87}{9.0330}) \\ = P(-0.6498 < Z < 1.5643) \\ = 0.9411 - (1 - 0.7422) = 0.6833 \end{aligned} \qquad \text{M1} \qquad \text{Formulation of requirement.} \\ \hline P(\frac{300 - 498 < Z < 1.5643) \\ = 0.9411 - (1 - 0.7422) = 0.6833 \end{aligned} \qquad \text{M1} \qquad \text{c.a.o.} \qquad 6 \\ \hline \text{iv} \qquad \text{Given } \overline{x} = 205.6 s_{n-1} = 8.51 \\ H_0: \mu = 200, H_1: \mu > 200 \\ \text{Test statistic is } \frac{205.6 - 200}{\frac{8.51}{\sqrt{10}}} \\ = 2.081. \end{aligned} \qquad \text{M1} \qquad \text{Allow alternative: } 200 + (c`s 1.833) \\ \times \frac{8.51}{\sqrt{10}} (= 204.933) \text{ for subsequent} \\ \text{comparison with } \overline{x}. \\ (\text{Or } \overline{x} - (c`s 1.833) \times \frac{8.51}{\sqrt{10}} \\ (= 200.667) \text{ for comparison with} \\ 200.) \\ \text{c.a. o. but ft from here in any case if wrong.} \\ \text{Wrog.} \\ \text{Use of } 200 - \overline{x} \text{scores M1A0, but ft.} \\ \text{Refer to } t_9. \\ \text{Single-tailed 5\% point is 1.833.} \\ \text{Significant.} \\ \text{Seems that the required reduction of the mean} \end{array} \qquad \text{M1} \qquad \begin{array}{c} \text{N0 ft from here if wrong.} \\ \text{P}(t > 2.081) = 0.0336. \\ \text{A1} \text{N0 ft from here if wrong.} \\ \text{fonly c's test statistic.} \\ \text{fonly c's test statistic.} \end{array} \qquad \text{fonly c's test statistic.} \end{array}$	(i)		A1		3
$= 1 - 0.9499 = 0.0501$ A1 c.a.o. 3 iii) $W_T \sim N(3.1 \times 56.5 + 0.8 \times 38.4 = 205.87,$ A1 M1 Use of "mass = density × volume" $3.1^2 \times 2.9^2 + 0.8^2 \times 1.1^2 = 81.5945$) A1 Name Name Name $P(200 < this < 220)$ A1 Name Name Name $= P(\frac{200 - 205.87}{9.0330} < Z < \frac{220 - 205.87}{9.0330})$ $= P(-0.6498 < Z < 1.5643)$ Formulation of requirement. $= P(-0.6498 < Z < 1.5643)$ $= 0.9411 - (1 - 0.7422) = 0.6833$ A1 c.a.o. 6 iv) Given $\bar{x} = 205.6 s_{n-1} = 8.51$ H0: $\mu = 200$, H1: $\mu > 200$ M1 Allow alternative: $200 + (c's 1.833)$ $\times \frac{8.51}{\sqrt{10}}$ $= 2.081$. M1 Allow alternative: $200 + (c's 1.833) \times \frac{8.51}{\sqrt{10}}$ (-200.667) for comparison with \overline{x} . $(0r \ \overline{x} - (c's 1.833) \times \frac{8.51}{\sqrt{10}}$ (-200.667) for comparison with 200 .) $= 2.081$. A1 No fi from here in any case if wrong. $V(z > 2.081) = 0.0336$. A1 Single-tailed 5% point is 1.833. Significant. Series that the required reduction of the mean A1 No fi from here if wrong. P(z > 2.081) = 0.0336. A1	(ii)	$2.9^2 + 1.1^2 = 9.62)$			
A1 3.1² × 2.9² + 0.8² × 1.1² = 81.5945)A1 M1 A1Mean.3.1² × 2.9² + 0.8² × 1.1² = 81.5945)A1 M1 		5.1010	A1	c.a.o.	3
$= P(\frac{200 - 205.87}{9.0330} < Z < \frac{220 - 205.87}{9.0330}) = P(-0.6498 < Z < 1.5643) = 0.9411 - (1 - 0.7422) = 0.6833$ A1 c.a.o. 6 iv) Given $\bar{x} = 205.6 s_{n-1} = 8.51$ H ₀ : $\mu = 200$, H ₁ : $\mu > 200$ Test statistic is $\frac{205.6 - 200}{\frac{8.51}{\sqrt{10}}}$ M1 Allow alternative: $200 + (c's 1.833) \times \frac{8.51}{\sqrt{10}}$ ($= 204.933$) for subsequent comparison with \bar{x} . (Or $\bar{x} - (c's 1.833) \times \frac{8.51}{\sqrt{10}}$ ($= 200.667$) for comparison with 200 .) and Comparison with 200 .) $= 2.081.$ Refer to t_9 . Single-tailed 5% point is 1.833. Significant. Seems that the required reduction of the mean Allow of the mean Allo	(iii)		A1 M1	Mean.	
$= 0.9411 - (1 - 0.7422) = 0.6833$ A1c.a.o.6iv)Given $\bar{x} = 205.6$ $s_{n-1} = 8.51$ $H_0: \mu = 200, H_1: \mu > 200$ M1Allow alternative: $200 + (c's 1.833)$ $\times \frac{8.51}{\sqrt{10}}$ M1Test statistic is $\frac{205.6 - 200}{\frac{8.51}{\sqrt{10}}}$ M1Allow alternative: $200 + (c's 1.833)$ $\times \frac{8.51}{\sqrt{10}}$ (= 204.933) for subsequent comparison with \bar{x} . $(Or \bar{x} - (c's 1.833) \times \frac{8.51}{\sqrt{10}}(= 200.667) for comparison with200.= 2.081.A1c.a.o. but ff from here in any case ifwrong.Use of 200 - \bar{x} scores M1A0, butft.Refer to t_9.M1No ff from here if wrong.P(t > 2.081) = 0.0336.N of ffrom here if wrong.ft only c's test statistic.Single-tailed 5% point is 1.833.Significant.Seems that the required reduction of the meanA1A1ft only c's test statistic.ft only c's test statistic.$		$= P(\frac{200 - 205.87}{9.0330} < Z < \frac{220 - 205.87}{9.0330})$	M1	Formulation of requirement.	
$H_0: \mu = 200, H_1: \mu > 200$ M1Allow alternative: $200 + (c^*s \ 1.833)$ $\times \frac{8.51}{\sqrt{10}}$ Test statistic is $\frac{205.6 - 200}{\frac{8.51}{\sqrt{10}}}$ M1Allow alternative: $200 + (c^*s \ 1.833)$ $\times \frac{8.51}{\sqrt{10}}$ ($= 204.933$) for subsequent comparison with \overline{x} . (Or $\overline{x} - (c^*s \ 1.833) \times \frac{8.51}{\sqrt{10}}$ ($= 200.667$) for comparison with 200.) $= 2.081.$ A1Case of $200 - \overline{x}$ scores M1A0, but ft.Refer to $t_9.$ M1No ft from here if wrong. $P(t > 2.081) = 0.0336.$ A1Single-tailed 5% point is 1.833. Significant. Seems that the required reduction of the meanM1No ft from here if wrong. A1A1A1ft only c's test statistic. ft only c's test statistic.		× ,	A1	c.a.o.	6
$\overline{\sqrt{10}}$ $\times \frac{1}{\sqrt{10}}$ $\times \frac{1}{\sqrt{10}}$ $\times \frac{1}{\sqrt{10}}$ $= 2.081.$ $= 2.081.$ $(Or \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $A1$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $(Cr \ \overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}})$ $= 2.081.$ $(Cr \ 1.833) \times \frac{8.51}{\sqrt{10}}$ <td>(iv)</td> <td></td> <td></td> <td></td> <td></td>	(iv)				
= 2.081.A1c.a.o. but ft from here in any case if wrong. Use of $200 - \overline{x}$ scores M1A0, but ft.Refer to t_9 .M1No ft from here if wrong. $P(t > 2.081) = 0.0336$.Single-tailed 5% point is 1.833. Significant. Seems that the required reduction of the meanA1No ft from here if wrong. ft only c's test statistic.A1ft only c's test statistic.6			M1	× $\frac{8.51}{\sqrt{10}}$ (= 204.933) for subsequent comparison with \overline{x} . (Or \overline{x} – (c's 1.833) × $\frac{8.51}{\sqrt{10}}$ (= 200.667) for comparison with	
Single-tailed 5% point is 1.833. $P(t > 2.081) = 0.0336.$ Significant.A1No ft from here if wrong.Seems that the required reduction of the meanA1ft only c's test statistic.6		= 2.081.	A1	c.a.o. but ft from here in any case if wrong. Use of $200 - \overline{x}$ scores M1A0, but	
Significant.A1ft only c's test statistic.Seems that the required reduction of the meanA1ft only c's test statistic.			M1	P(t > 2.081) = 0.0336.	
Seems that the required reduction of the mean A1 ft only c's test statistic. 6					
					6

4768	Mark Schem	ne	January 20	9 9 x
				Insc/o
Q3			January 20.	
(i)	In this situation a paired test is appropriate because			
	there are clearly differences between specimens which the pairing eliminates.	E1 E1		2
(ii)	$H_0: \mu_D = 0$	B1	Both. Accept alternatives e.g. $\mu_D < 0$	
	$\mathrm{H}_{1}: \mu_{D} > 0$		for H ₁ , or $\mu_A - \mu_B$ etc provided adequately defined. Hypotheses in words only must include "population".	
	Where μ_D is the (population) mean reduction in hormone concentration.	B1	For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow	
			" $\overline{X} = \dots$ " or similar unless \overline{X} is	
	Must assume		clearly and explicitly stated to be a <u>population</u> mean.	
	Sample is random	B1		
	Normality of differences	B1		4
(iii)	$\frac{\text{MUST}}{\text{Differences (reductions) (before - after) are}}$		Allow "after – before" if consistent with alternatives above.	
	-0.75 2.71 2.59 6.07 0.71 -1.85 -0.98 3.56	1.77	2.95 1.59 4.17 0.38 0.88 0.95	
	$\bar{x} = 1.65 s_{n-1} = 2.100(3) (s_{n-1}^2 = 4.4112)$	B1	Do not allow $s_n = 2.0291 (s_n^2 = 4.1171)$	
	Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 0 + (c's 2.624) × $\frac{2.100}{\sqrt{15}}$ (= 1.423) for subsequent	
			comparison with \overline{x} . (Or $\overline{x} - (c's 2.624) \times \frac{2.100}{\sqrt{15}}$	
	= 3.043.	A1	(= 0.227) for comparison with 0.) c.a.o. but ft from here in any case if wrong.	
			Use of $0 - \overline{x}$ scores M1A0, but ft.	
	Refer to t_{14} .	M1	No ft from here if wrong. P(t > 3.043) = 0.00438.	
	Single-tailed 1% point is 2.624. Significant.	A1 A1	No ft from here if wrong. ft only c's test statistic.	
	Significant. Seems mean concentration of hormone has fallen.	A1 A1	ft only c's test statistic.	7
(iv)	CI is 1.65 ±	M1	ft c's $\overline{x} \pm$.	
	$k \times \frac{2.100}{\sqrt{15}}$	M1	ft c's s_{n1} .	
	= (0.4869, 2.8131)	A1	A correct equation in <i>k</i> using either end of the interval or the width of the interval.	
	$\therefore k = 2.145$	A1	Allow ft c's \overline{x} and s_{n1} .	
	By reference to t_{14} tables this is a 95% CI.	A1	c.a.o.	5

4768	3			Mark Sc	heme				January 20	NYME
Q4										
i)	Sampling whi		from those	that are	E1					
	(easily) availa Circumstances economically Likely to be n	s may mea viable me	thod availab	ole.	E1 E1					3
(ii)										
(11)	$p + pq + pq^{2} + pq^{3} + pq^{4} + pq^{5} + q^{6}$ $= \frac{p(1 - q^{6})}{1 - q} + q^{6} = \frac{p(1 - q^{6})}{p} + q^{6}$			M1	proł	babilities,	rmula to sur terms of <i>p</i> o			
	$=1-q^{6}+q^{6}=$	1			A1	of q	-			2
							ebra shov vare answ	vn convincir er given.	ngly.	
(iii)	With $p = 0.25$									
	Probability	0.25	0.1875	0.140625	0.10546	59 0	.079102	0.059326	0.177979	
	Expected fr	25.00	18.75	14.0625	10.5469) 7	.9102	5.9326	17.7979	
	$X^{2} = 0.04 + 0$ + 0.7204 = 10.97(5	+ 7.8206	0.6136 + 0.5	706 + 1.206	M1 M1 A1 9 M1 A1	bett × 10	er. 00 for exp correct ar	correct to 3 bected freque ad sum to 10	encies.	
	(If e.g. only 20 $X^2 = 0.04 + 0$ + 0.7226 = 10.97(9) Refer to χ_6^2 . Upper 10% pc Significant.	0.0033 + (+ 7.8225 93))	0.6148 + 0.5		1 M1 A1 A1	wro Oth P(X No	erwise, no $^2 > 10.973$ ft from he	t df (= cells ped table ar o ft if wrong 5) = 0.0891. ere if wrong st statistic.	nd ft. 3.	
	Suggests mod	el with p =	= 0.25 does	not fit.	A1			st statistic.		9
(iv)	Now with X^2 = Refer to χ_5^2 . Upper 10% po Not significan Improvement	bint is 9.23 it. (Sugges to the mod	sts new mod		M1 A1 A1 E1	wro Oth P(X No Cor Cor	erwise, no erwise, no $^2 > 9.124$ ft from he rect concl nment abo	out the effect	nd ft. 	4
	of <i>p</i> from t	the data.						consistent w part (iii).	ith	18

4771 Decision Mathematics 1

2.							
(i)					_		
	n	i	j	k			
	5	1	3	3		B1	
		2	2	8		B1	
		3	1	13		B1	
		4	0	16		B1	
	k = 16					B1	
(ii)	f(5) = 125/6					M1	substituting
	(Need to se	e 125 or 20	0.83 for A1)		A1	
(iii)	cubic comp	lexity				B1	

				Mun Mu January 20. Mainse	
4771			Mark Scheme	January 20 January 20	Maths .
4.				с. Г	YOUN.C.
(i)	48–7 80–9	7→90 '9→80 95→40 97,98, 99 ignore		M1 some rejected A3 correct proportions (– 1 each error) A1 efficient	OM
(ii)	smaller propo	rtion rejected		B1	
(iii)	e.g. 90, 9	0, 90, 80	350	M1 A1 A1√	
(iv)	80, 9 90, 4 40, 9 90, 9 80, 8 80, 8 90, 8	30, 90, 80 90, 80, 80 90, 80, 90 90, 90, 90 90, 90, 90 90, 90, 90 30, 40, 90 30, 80, 90 30, 90, 90 30, 40, 90 30, 90, 90 40, 90 30, 90, 90 40, 90 50, 90 50, 90 50, 90 50, 90 50, 90 50, 90 50, 90 50, 90 50, 90 50, 90 50, 90 50, 90 5	340 330 300 310 360 290 330 350 250	M1 A3 (-1 each error) $$	
	prob (load>32	(25) = 0.6		M1 A1	
(v)	e.g. family gro	oups		B1	

January 20. The states of the

4776 Numerical Methods

1(i)	x -3	y -16	1st diff	2nd diff			
	-1	-2	14				
	1	4	6	-8			[M1A1]
	3	2	-2	-8	2nd differe	nce constant so quadratic fits	[E1]
(ii)		-14(x+3)/2 $7x+21-x^2$		x + 1)/8			[M1A1A1A1]
	= 2 + 3	$x - x^2$					[A1] [TOTAL 8]
2(i)		g algebra to o		result			[M1A1]
(ii)(A)	Direct subt	raction:	0.0022				[B 1]
(B)	Using (*):			0+223.6068)			[M1A1]
	Second val	ue has many	more signif	icant figures ("more accur	ate") may be implied	[E1]
	Subtraction	of nearly e	qual quantiti	es loses precis	sion		[E1]
							[TOTAL 7]
3(i)	x	f(x)					
	0	1					
	0.8	0.819951		T1 =	0.72798		[M1]
	0.4	0.994867		M1 =	0.795893		[M1]
				hence $S1 =$	0.773256		[M1]
						all values	5 [A1]
(ii)		T2 =	0.761937				[B 1]
		M2 =	0.784069	so S2 =	0.776692		[M1A1]
	S2 will be	much more a	accurate than	n S1 so 0.78 of	r 0.777 woul	d be justified	[A1]
							[TOTAL 8]
4(i)	х	cosx	$1 - 0.5x^2$	error	rel error		
-(1)	0.3	0.955336	0.955	-0.000336	-0.000352	condone signs here	[M1A1A1A1]
		0.7555550		0.000550	0.000552	but require correct	
(**)		(1.0.2	4 0.00022	r		-	0.01
(ii)			$^{4} = 0.000336$		42 1/24)	sign for k	[M1]
		gives k –	0.041542	(0.0415, 0.0	42, 1/24)		[A1]
							[TOTAL 6]
5	r	0	1	2			
	Xr	3	3	3			
	Xr	2.99	2.9701	2.911194			[M1A1A1]
	Xr	3.01	3.0301	3.091206			
		Derivative	is 2x - 3. Ev	valuates to 3 a	t x = 3		[M1A1]
				the iteration d		erge	[E1]
		-		root for conve		2	[E1]
		·····			J		[TOTAL 7]

1776				Mark	Scheme			January 20.
5(i) Dem	nonstra	ate change of			and hence ex	kistence of		[B 1]
	a 0.2	b 0.3	f(a) -0.06429	f(b) 0.021031	X 0.25	mpe	f(x)	
	0.25	0.3	-0.06429	0.021031	0.25 0.275	0.05 0.025	-0.01827 0.002134	[M1] [M1]
	0.25	0.275	0.01027	0.021001	0.2625	0.0125	-0.00787	[A1A1A1]
								[subtotal 6]
ii)	r	Xr	$\mathbf{f}_{\mathbf{r}}$					
	0	0.2	-0.06429					
	1 2	0.3 0.275352	0.021031 0.00241					[M1A1]
	3	0.272161	-0.0001					[M1A1]
					7 or 0.272 as			[A1]
				secant met	hod much fa	aster		[E1]
								[subtotal 6]
iii)	r	Xr	er	e_{r+1}/e_{r}^{2}				
	0	1.4	0.101496					<i>e col:</i> [M1A1]
	1	1.314351	0.015847	1.538329				e/e^2 col: [M1A1]
	2	1.298887	0.000383	1.525122	-1	.		(TE 1)
	3	1.298504	= root	-	order conve		convergence	[E1]
						-	he previous e	rror [E1]
								[subtotal 6]
								[TOTAL 18]
/(i) fwd	diff:	h	0.4	0.2	0.1			
		f'(0)	0.444758	0.473525	0.48711			[M1A1A1]
		diffs		0.028768	0.013585	approx h	alved	[B1]
								[subtotal 4]
ii) cent	diff:	h	0.4	0.2	0.1			
		f'(0)	0.491631	0.498315	0.50008			[M1A1A1]
		diffs		0.006684	0.001765		n greater than ard difference	
								[subtotal 4]
iii) (D ₂	- d) =	$0.5 (D_1 - d)$		convincing	g algebra to	$d = 2D_2 - 1$	D_1	[M1A1]
(D ₂	- d) =	0.25 (D ₁ - d	l)	convincing	g algebra to	$d = (4D_2 -$	D ₁)/3	[M1A1A1]
								[subtotal 5]
	diff	2(0.487)	11) - 0.4735	25 =	0.500695			[M1A1]
iv) fwd	unn.							
iv) fwd cent		(4(0.5000	08) - 0.4983	15) / 3 =	0.500668			[M1A1]
		(4(0.5000	08) - 0.4983	15) / 3 =	0.500668 0.5007 see	ems secure		[M1A1] [E1]

Grade Thresholds

Advanced GCE (Subject) (Aggregation Code(s)) January 2009 Examination Series

Unit Threshold Marks

Unit	Unit		Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	61	53	45	37	30	0
4752	Raw	72	60	53	46	40	34	0
4753/01	Raw	72	61	54	47	40	32	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	75	66	57	49	41	0
4755	Raw	72	57	49	41	33	26	0
4756	Raw	72	53	47	42	37	32	0
4758/01	Raw	72	61	53	45	37	29	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	58	50	42	34	27	0
4762	Raw	72	57	49	41	33	26	0
4763	Raw	72	53	46	39	32	25	0
4766/G241	Raw	72	57	48	40	32	24	0
4767	Raw	72	60	52	45	38	31	0
4768	Raw	72	53	46	39	33	27	0
4771	Raw	72	57	51	45	39	33	0
4776/01	Raw	72	56	49	43	37	30	0
4776/02	Raw	18	14	12	10	8	7	0

www.mymathscioud.com

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	E	U
3895-3898	300	240	210	180	150	120	0
7895-7898	600	480	420	360	300	240	0

www.mymathscloud.com

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3895	18.3	43.5	65.4	83.8	96.0	100.0	640
3896	39.2	58.8	78.4	86.3	96.1	100.0	94
3897	100.0	100.0	100.0	100.0	100.0	100.0	1
7895	22.2	57.6	81.7	93.0	98.1	100.0	186
7896	18.8	56.3	87.5	87.5	93.8	100.0	16

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

