Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (MEI) (7895)
Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897)

Advanced GCE Pure Mathematics (MEI) (7898)
Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Further Mathematics (MEI) (3896)
Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit/Content Page
4751 (C1) Introduction to Advanced Mathematics 1
4752 (C2) Concepts for Advanced Mathematics 6
4753 (C3) Methods for Advanced Mathematics 9
4754 (C4) Applications of Advanced Mathematics 13
4755 (FP1) Further Concepts for Advanced Mathematics 18
4756 (FP2) Further Methods for Advanced Mathematics 24
4758 Differential Equations 29
4761 Mechanics 1 33
4762 Mechanics 2 38
4763 Mechanics 3 43
4766 Statistics 1 47
4767 Statistics 2 53
4768 Statistics 3 57
4771 Decision Mathematics 1 61
4776 Numerical Methods 65
Grade Thresholds 67

4751 (C1) Introduction to Advanced Mathematics

Section A

1	(i) 0.125 or $1 / 8$ (ii) 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	as final answer	2
2	$y=5 x-4$ www	3	M2 for $\frac{y-11}{-9-11}=\frac{x-3}{-1-3}$ o.e. or M1 for grad $=\frac{11-(-9)}{3-(-1)}$ or 5 eg in y $=5 x+k$ and M 1 for $y-11=$ their $m(x-$ 3) o.e. or subst $(3,11)$ or $(-1,-9)$ in $y=$ their $m x+c$ or M1 for $y=k x-4$ (eg may be found by drawing)	3
3	$x>9 / 6$ o.e. or 9/6<x o.e. Www isw	3	M2 for $9<6 x$ or M1 for $-6 x<-9$ or $k<$ $6 x$ or $9<k x$ or $7+2<5 x+x$ [condone \leq for Ms]; if 0 , allow SC 1 for 9/6 o.e found	3
4	$a=-5 \mathrm{www}$	3	M1 for $\mathrm{f}(2)=0$ used and M1 for $10+$ $2 a=0$ or better long division used: M1 for reaching $(8+a) x-6$ in working and M1 for $8+a=3$ equating coeffts method: M2 for obtaining $x^{3}+2 x^{2}+4 x+3$ as other factor	3
5	(i) $4\left[x^{3}\right]$ (ii) $84\left[x^{2}\right]$ www	2	ignore any other terms in expansion M1 for $-3\left[x^{3}\right]$ and $7\left[x^{3}\right]$ soi; M1 for $\frac{7 \times 6}{2}$ or 21 or for Pascal's triangle seen with $1721 \ldots$ row and M1 for 2^{2} or 4 or $\{2 x\}^{2}$	5

6	$1 / 5$ or 0.2 o.e. www	3	M1 for $3 x+1=2 x \times 4$ and M1 for $5 x=1$ o.e. or M1 for $1.5+\frac{1}{2 x}=4$ and M1 for $\frac{1}{2 x}=2.5$ o.e.	3
7	(i) $5^{3.5}$ or $k=3.5$ or $7 / 2$ o.e. (ii) $16 a^{6} b^{10}$	2 2	M1 for $125=5^{3}$ or $\sqrt{5}=5^{\frac{1}{2}}$ SC 1 for $5^{\frac{3}{2}}$ o.e. as answer without working M1 for two 'terms' correct and multiplied; mark final answer only	4
8	$\begin{aligned} & b^{2}-4 a c \text { soi } \\ & k^{2}-4 \times 2 \times 18<0 \text { o.e. } \\ & -12<k<12 \end{aligned}$	M1 M1 A2	allow in quadratic formula or clearly looking for perfect square condone \leq; or M1 for 12 identified as boundary may be two separate inequalities; A1 for \leq used or for one 'end' correct if two separate correct inequalities seen, isw for then wrongly combining them into one statement; condone b instead of k; if no working, SC2 for $k<12$ and SC2 for $k>-12$ (ie SC2 for each 'end' correct)	4
9	$\begin{aligned} & y+5=x y+2 x \\ & y-x y=2 x-5 \text { oe or } \mathrm{ft} \\ & y(1-x)=2 x-5 \text { oe or } \mathrm{ft} \\ & {[y=] \frac{2 x-5}{1-x} \text { oe or } \mathrm{ft} \text { as final answer }} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \end{array}$	for expansion for collecting terms for taking out y factor; dep on $x y$ term for division and no wrong work after ft earlier errors for equivalent steps if error does not simplify problem	4
10	(i) $9 \sqrt{3}$ (ii) $6+2 \sqrt{ } 2 \mathrm{www}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	M1 for $5 \sqrt{ } 3$ or $4 \sqrt{ } 3$ seen M1 for attempt to multiply num. and denom. by $3+\sqrt{ } 2$ and $M 1$ for denom. 7 or $9-2$ soi from denom. mult by $3+\sqrt{ } 2$	5

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 12 \& ii
iii \& \begin{tabular}{l}
\[
\begin{aligned}
\& 3 x^{2}+6 x+10=2-4 x \\
\& 3 x^{2}+10 x+8[=0] \\
\& (3 x+4)(x+2)[=0] \\
\& x=-2 \text { or }-4 / 3 \text { o.e. } \\
\& y=10 \text { or } 22 / 3 \text { o.e. } \\
\& 3(x+1)^{2}+7
\end{aligned}
\] \\
\(\min\) at \(y=7\) or ft from (ii) for positive \(c\) (ft for (ii) only if in correct form)
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& 4 \\
\& 4 \\
\& \text { B2 }
\end{aligned}
\] \& \begin{tabular}{l}
for subst for \(x\) or \(y\) or subtraction attempted or \(3 y^{2}-52 y+220[=0]\); for rearranging to zero (condone one error) or \((3 y-22)(y-10)\); for sensible attempt at factorising or formula or completing square or A1 for each of \((-2,10)\) and (-4/3, 22/3) o.e. \\
1 for \(a=3,1\) for \(b=1,2\) for \(c=7\) or M1 for \(10-3 \times\) their \(b^{2}\) soi or for \(7 / 3\) or for \(10 / 3\) - their \(b^{2}\) soi \\
may be obtained from (ii) or from good symmetrical graph or identified from table of values showing symmetry condone error in \(x\) value in stated min ft from (iii) [getting confused with 3 factor] \\
B1 if say turning pt at \(y=7\) or ft without identifying min or M1 for min at \(x=-1\) [e.g. may start again and use calculus to obtain \(x=-1]\) or min when \((x+1)^{[2]}=0\); and A1 for showing \(y\) positive at min or M1 for showing discriminant neg. so no real roots and A1 for showing above axis not below eg positive \(x^{2}\) term or goes though \((0,10)\) or M1 for stating bracket squared must be positive [or zero] and A1 for saying other term is positive
\end{tabular} \& 5
4

4

2

\hline
\end{tabular}

4752 (C2) Concepts for Advanced Mathematics

Section A

1	$\begin{aligned} & 4 x^{5} \\ & -12 x^{-\frac{1}{2}} \\ & +c \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 1 \end{aligned}$	M1 for other $k x^{-\frac{1}{2}}$	4
2	95.25, 95.3 or 95	4	$\begin{aligned} & \text { M3 } \\ & 1 / 2 \times 5 \times(4.3+0+2[4.9+4.6+3.9+2.3+1.2]) \end{aligned}$ M2 with 1 error, M1 with 2 errors. Or M3 for 6 correct trapezia.	4
3	1.45 o.e.	2	M1 for $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}$ oe	2
4	105 and 165	3	B1 for one of these or M1 for $2 x=210$ or 330	3
5	(i) graph along $y=2$ with V at $(3,2)(4,1) \&(5,2)$ (ii) graph along $y=6$ with V at $(1,6)(2,3) \&(3,6)$	2 2	M1 for correct V , or for $\mathrm{f}(\mathrm{x}+2)$ B1 for (2,k) with all other elements correct	4
6	(i) 54.5 (ii) Correct use of sum of AP formula with $n=50,20,19$ or 21 with their d and $a=7$ eg $\mathrm{S}_{50}=$ $3412.5, \mathrm{~S}_{20}=615$ Their $\mathrm{S}_{50}-\mathrm{S}_{20}$ dep on use of ap formula 2797.5 c.a.o.	2 M1 M1 A1	```B1 for \(d=2.5\) or M 2 for correct formula for \(\mathrm{S}_{30}\) with their d M1 if one slip```	5
7	$8 x-x^{-2} \text { o.e }$ their $\frac{d y}{d x}=0$ correct step $x=1 / 2 \text { c.a.o. }$	$\begin{aligned} & \hline 2 \\ & \text { M1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	B1 each term s.o.i. s.o.i.	5
8	(i) 48 geometric, or GP (ii) mention of $\|r\|<1$ condition o.e. $\mathrm{S}=128$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\text { M1 for } \frac{192}{1--\frac{1}{2}}$	5
9	(i) 1 (ii) (A) $3.5 \log _{a} x$ (ii) (B) $-\log _{a} x$	1 2 1	M1 for correct use of $1^{\text {st }}$ or $3^{\text {rd }}$ law	4

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 \& i

ii

iii \& \begin{tabular}{l}
$$
\begin{aligned}
& 7-2 x \\
& x=2, \text { gradient }=3 \\
& x=2, y=4 \\
& y-\text { their } 4=\text { their } \operatorname{grad}(x-2)
\end{aligned}
$$

subst $y=0$ in their linear eqn completion to $x=\frac{2}{3}$ (ans given) $\mathrm{f}(1)=0$ or factorising to $(x-1)(6-x)$ or $(x-1)(x-6)$ 6 www
$$
\frac{7}{2} x^{2}-\frac{1}{3} x^{3}-6 x
$$

value at 2 - value at 1 $2 \frac{1}{6}$ or 2.16 to 2.17

$\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral 0.5 o.e.

 \&

M1

A1

B1

M1

M1

A1

1

1

M1

M1

A1

M1

A1

 \&

differentiation must be used or use of $y=$ their $m x+c$ and subst (2, their 4), dependent on diffn seen

or using quadratic formula correctly to obtain $x=1$

for two terms correct; ignore $+c$ ft attempt at integration only
\end{tabular} \& 6

2

5

\hline 11 \& | i(A) |
| :--- |
| i(B) $\mathbf{i i}(\mathrm{A})$ $\mathbf{i}(\mathrm{B})$ | \& | $150(\mathrm{~cm}) \text { or } 1.5 \mathrm{~m}$ $\begin{aligned} & 1 / 2 \times 60^{2} \times 2.5 \text { or } 4500 \\ & 1 / 2 \times 140^{2} \times 2.5 \text { or } 24500 \end{aligned}$ |
| :--- |
| subtraction of these $20000\left(\mathrm{~cm}^{2}\right)$ isw |
| attempt at use of cosine rule |
| $\cos \mathrm{EFP}=\frac{3.5^{2}+2.8^{2}-1.6^{2}}{2 \times 2.8 \times 3.5}$ o.e. |
| 26.5 to 26.65 or 27 |
| $2.8 \sin$ (their EFP) o.e. |
| 1.2 to 1.3 [m] | \& \[

$$
\begin{array}{|l}
\hline 2 \\
\\
\text { M1 } \\
\text { M1 } \\
\text { DM1 } \\
\text { A1 } \\
\text { M1 } \\
\\
\text { M1 } \\
\text { A1 } \\
\text { M1 }
\end{array}
$$

\] \& | M1 for 2.5×60 or 2.5×0.6 or for 1.5 with no units |
| :--- |
| or equivalents in m^{2} |
| or $2 \mathrm{~m}^{2}$ |
| condone 1 error in substitution | \& 2

4
4
3
3

\hline
\end{tabular}

4753 (C3) Methods for Advanced Mathematics

Section A

$\begin{aligned} & \mathbf{1}\|x-1\|<3 \Rightarrow-3<x-1<3 \\ & \Rightarrow \quad-2<x<4 \end{aligned}$	M1 A1 B1 [3]	or $x-1= \pm 3$, or squaring \Rightarrow correct quadratic \Rightarrow $(x+2)(x-4)$ (condone factorising errors) or correct sketch showing $y=3$ to scale $-2<$ $<4 \quad$ (penalise \leq once only)
$\begin{array}{ll} \text { 2(i) } & y=x \cos 2 x \\ \Rightarrow & \frac{d y}{d x}=-2 x \sin 2 x+\cos 2 x \end{array}$	M1 B1 A1 [3]	product rule $\mathrm{d} / \mathrm{d} x(\cos 2 x)=-2 \sin 2 x$ oe cao
$\text { (ii) } \begin{aligned} & \int x \cos 2 x d x=\int x \frac{d}{d x}\left(\frac{1}{2} \sin 2 x\right) d x \\ = & \frac{1}{2} x \sin 2 x-\int \frac{1}{2} \sin 2 x d x \\ = & \frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+c \end{aligned}$	M1 A1 A1ft A1 [4]	parts with $u=x, v=1 / 2 \sin 2 x$ $\begin{aligned} & +\frac{1}{4} \cos 2 x \\ & \text { cao }- \text { must have }+c \end{aligned}$
$\begin{array}{ll} 3 & \text { Either } \quad y=\frac{1}{2} \ln (x-1) \quad x \leftrightarrow y \\ \Rightarrow & x=\frac{1}{2} \ln (y-1) \\ \Rightarrow & 2 x=\ln (y-1) \\ \Rightarrow & \mathrm{e}^{2 x}=y-1 \\ \Rightarrow & 1+\mathrm{e}^{2 x}=y \\ \Rightarrow & \mathrm{~g}(x)=1+\mathrm{e}^{2 x} \end{array}$	M1 M1 E1	or $y=\mathrm{e}^{(x-1) / 2}$ attempt to invert and interchanging x with y o.e. (at any stage) $\mathrm{e}^{\ln y-1}=y-1 \text { or } \ln \left(\mathrm{e}^{y}\right)=y \text { used }$ www
$\text { or } \begin{aligned} \operatorname{gf}(x) & =\mathrm{g}(1 / 2 \ln (x-1)) \\ & =1+\mathrm{e}^{\ln (x-1)} \\ & =1+x-1 \\ & =x \end{aligned}$	M1 M1 E1 [3]	or $\operatorname{fg}(x)=\ldots$ (correct way round) $\mathrm{e}^{\ln (x-1)}=x-1$ or $\ln \left(\mathrm{e}^{2 x}\right)=2 x$ www
$\begin{aligned} 4 & \int_{0}^{2} \sqrt{1+4 x} d x \quad \text { let } u=1+4 x, d u=4 d x \\ = & \int_{1}^{9} u^{1 / 2} \cdot \frac{1}{4} d u \\ = & {\left[\frac{1}{6} u^{3 / 2}\right]_{1}^{9} } \\ = & \frac{27}{6}-\frac{1}{6}=\frac{26}{6}=\frac{13}{3} \text { or } 4 \frac{1}{3} \end{aligned}$	M1 A1 B1 M1 A1cao	$\begin{aligned} & u=1+4 x \text { and } \mathrm{d} u / \mathrm{d} x=4 \text { or } \mathrm{d} u=4 \mathrm{~d} x \\ & \int u^{1 / 2} \cdot \frac{1}{4} d u \\ & \int u^{1 / 2} d u=\frac{u^{3 / 2}}{3 / 2} \text { soi } \end{aligned}$ substituting correct limits (u or x) dep attempt to integrate
$\text { or } \quad \begin{aligned} & \frac{d}{d x}(1+4 x)^{3 / 2}=4 \cdot \frac{3}{2}(1+4 x)^{1 / 2}=6(1+4 x)^{1 / 2} \\ & \Rightarrow \quad \int_{0}^{2}(1+4 x)^{1 / 2} d x=\left[\frac{1}{6}(1+4 x)^{3 / 2}\right]_{0}^{2} \\ &=\frac{27}{6}-\frac{1}{6}=\frac{26}{6}=\frac{13}{3} \text { or } 4 \frac{1}{3} \end{aligned}$	M1 A1 A1 M1 A1cao [5]	$\int^{\int(1+4 x)^{1 / 2}} d x=\frac{2}{3}(1+4 x)^{3 / 2} \ldots$ substituting limits (dep attempt to integrate)

5(i) period 180°	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	condone $0 \leq x \leq 180^{\circ}$ or π
(ii) one-way stretch in x-direction scale factor $1 / 2$ translation in y-direction through $\binom{0}{1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	$\begin{aligned} & \text { [either way round...] } \\ & \text { condone 'squeeze', 'contract' for M1 } \\ & \text { stretch used and s.f } 1 / 2 \\ & \text { condone 'move', 'shift', etc for M1 } \\ & \text { 'translation' used, }+1 \text { unit } \\ & \binom{0}{1} \text { only is M1 A0 } \end{aligned}$
(iii)	M1 B1 A1 [3]	correct shape, touching x-axis at $-90^{\circ}, 90^{\circ}$ correct domain $(0,2)$ marked or indicated (i.e. amplitude is 2)
$\begin{aligned} & \text { 6(i) e.g } p=1 \text { and } q=-2 \\ & \quad p>q \text { but } 1 / p=1>1 / q=-1 / 2 \end{aligned}$	M1 E1 [2]	stating values of p, q with $p \geq 0$ and $q \leq 0$ (but not p $=q=0$) showing that $1 / p>1 / q-$ if 0 used, must state that $1 / 0$ is undefined or infinite
(ii) Both p and q positive (or negative)	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	or $q>0$, 'positive integers'
$\begin{aligned} & \text { 7(i) } \quad \frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} \frac{d y}{d x}=0 \\ & \Rightarrow \quad \frac{d y}{d x} \end{aligned}=-\frac{\frac{2}{3} x^{-1 / 3}}{\frac{2}{3} y^{-1 / 3}} .$	M1 A1 M1 E1 [4]	Implicit differentiation (must show $=0$) solving for $\mathrm{d} y / \mathrm{d} x$ www. Must show, or explain, one more step.
$\text { (ii) } \begin{aligned} \frac{d y}{d t} & =\frac{d y}{d x} \cdot \frac{d x}{d t} \\ & =-\left(\frac{8}{1}\right)^{\frac{1}{3}} \cdot 6 \\ & =-12 \end{aligned}$	M1 A1 A1cao [3]	any correct form of chain rule

$\begin{aligned} & \text { 8(i) When } x=1 y=1^{2}-(\ln 1) / 8=1 \\ & \text { Gradient of } \mathrm{PR}=(1+7 / 8) / 1=1 \frac{7}{8} \end{aligned}$	B1 M1 A1 [3]	1.9 or better
(ii) $\frac{d y}{d x}=2 x-\frac{1}{8 x}$ When $x=1, \mathrm{~d} y / \mathrm{d} x=2-1 / 8=1 \frac{7}{8}$ Same as gradient of PR, so PR touches curve	B1 B1dep E1 [3]	cao 1.9 or better dep $1^{\text {st }} \mathrm{B} 1$ dep gradients exact
(iii) Turning points when $d \mathrm{y} / \mathrm{d} x=0$ $\begin{array}{ll} \Rightarrow & 2 x-\frac{1}{8 x}=0 \\ \Rightarrow & 2 x=\frac{1}{8 x} \\ \Rightarrow & x^{2}=1 / 16 \\ \Rightarrow & x=1 / 4(x>0) \end{array}$ When $x=1 / 4, y=\frac{1}{16}-\frac{1}{8} \ln \frac{1}{4}=\frac{1}{16}+\frac{1}{8} \ln 4$ So TP is $\left(\frac{1}{4}, \frac{1}{16}+\frac{1}{8} \ln 4\right)$	M1 M1 A1 M1 A1cao [5]	setting their derivative to zero multiplying through by x allow verification substituting for x in y o.e. but must be exact, not $1 / 4^{2}$. Mark final answer.
(iv) $\frac{d}{d x}(x \ln x-x)=x \cdot \frac{1}{x}+1 \cdot \ln x-1=\ln x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	product rule $\ln x$
$\begin{aligned} \text { Area } & =\int_{1}^{2}\left(x^{2}-\frac{1}{8} \ln x\right) d x \\ & =\left[\frac{1}{3} x^{3}-\frac{1}{8}(x \ln x-x)\right]_{1}^{2} \\ = & \left(\frac{8}{3}-\frac{1}{4} \ln 2+\frac{1}{4}\right)-\left(\frac{1}{3}-\frac{1}{8} \ln 1+\frac{1}{8}\right) \\ = & \frac{7}{3}+\frac{1}{8}-\frac{1}{4} \ln 2 \\ = & \frac{59}{24}-\frac{1}{4} \ln 2 * \end{aligned}$	M1 M1 A1 M1 E1 [7]	correct integral and limits (soi) - condone no $\mathrm{d} x$ $\int \ln x d x=x \ln x-x$ used (or derived using integration by parts) $\frac{1}{3} x^{3}-\frac{1}{8}(x \ln x-x)-$ bracket required substituting correct limits must show at least one step

$\begin{aligned} & \text { 9(i) } \quad \text { Asymptotes when }(\sqrt{ })\left(2 x-x^{2}\right)=0 \\ & \Rightarrow \quad x(2-x)=0 \\ & \Rightarrow \quad x=0 \text { or } 2 \\ & \\ & \quad \text { so } a=2 \\ & \text { Domain is } 0<x<2 \end{aligned}$	M1 A1 B1ft [3]	or by verification $x>0$ and $x<2$, not \leq
$\begin{aligned} & \text { (ii) } y=\left(2 x-x^{2}\right)^{-1 / 2} \\ & \quad \text { let } u=2 x-x^{2}, y=u^{-1 / 2} \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} u=-1 / 2 u^{-3 / 2}, \mathrm{~d} u / \mathrm{d} x=2-2 x \\ & \Rightarrow \\ & \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=-\frac{1}{2}\left(2 x-x^{2}\right)^{-3 / 2} \cdot(2-2 x) \\ & \quad=\frac{x-1}{\left(2 x-x^{2}\right)^{3 / 2}} * \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	chain rule (or within correct quotient rule) $-1 / 2 u^{-3 / 2}$ or $-\frac{1}{2}\left(2 x-x^{2}\right)^{-3 / 2}$ or $\frac{1}{2}\left(2 x-x^{2}\right)^{-1 / 2}$ in quotient rule $\times(2-2 x)$ www - penalise missing brackets here
	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \\ & \text { B1ft } \\ & {[8]} \end{aligned}$	extraneous solutions M0
(iii) $(A) \mathrm{g}(-x)=\frac{1}{\sqrt{1-(-x)^{2}}}=\frac{1}{\sqrt{1-x^{2}}}=\mathrm{g}(x)$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Expression for $\mathrm{g}(-x)$ - must have $\mathrm{g}(-x)=\mathrm{g}(x)$ seen
$\begin{aligned} & \text { (B) } \mathrm{g}(x-1)=\frac{1}{\sqrt{1-(x-1)^{2}}} \\ & =\frac{1}{\sqrt{1-x^{2}+2 x-1}}=\frac{1}{\sqrt{2 x-x^{2}}}=\mathrm{f}(x) \end{aligned}$	M1 E1	must expand bracket
(C) $\mathrm{f}(x)$ is $\mathrm{g}(x)$ translated 1 unit to the right. But $\mathrm{g}(x)$ is symmetrical about $\mathrm{O} y$ So $\mathrm{f}(x)$ is symmetrical about $x=1$.	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	dep both M1s
or $\mathrm{f}(1-x)=\mathrm{g}(-x), \mathrm{f}(1+x)=\mathrm{g}(x)$ $\begin{aligned} & \Rightarrow \quad \mathrm{f}(1+x)=\mathrm{f}(1-x) \\ & \Rightarrow \quad \mathrm{f}(x) \text { is symmetrical about } x=1 . \end{aligned}$	M1 E1 A1 [7]	$\begin{aligned} & \text { or } \mathrm{f}(1-x)=\frac{1}{\sqrt{2-2 x-(1-x)^{2}}}=\frac{1}{\sqrt{2-2 x-1+2 x-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}} \\ & \mathrm{f}(1+x)=\frac{1}{\sqrt{2+2 x-(1+x)^{2}}}=\frac{1}{\sqrt{2+2 x-1-2 x-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}} \end{aligned}$

4754 (C4) Applications of Advanced Mathematics

Section A

$\begin{aligned} & 1 \quad \frac{3 x+2}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{\left(x^{2}+1\right)} \\ & \Rightarrow \quad 3 x+2=A\left(x^{2}+1\right)+(B x+C) x \\ & \text { coefft of } x^{2}: 0 \Rightarrow 2=A \\ & \text { coefft of } x: 3=C \\ & \Rightarrow \quad \frac{3 x+2}{x\left(x^{2}+1\right)}=\frac{2}{x}+\frac{3-2 x}{\left(x^{2}+1\right)} \end{aligned}$	M1 M1 B1 M1 A1 A1 [6]	correct partial fractions equating coefficients at least one of B, C correct
2(i) $\begin{gathered} \begin{array}{c} (1+2 x)^{1 / 3}=1+\frac{1}{3} \cdot 2 x+\frac{\frac{1}{3} \cdot\left(-\frac{2}{3}\right)}{2!}(2 x)^{2}+\ldots \\ =1+\frac{2}{3} x-\frac{2}{18} 4 x^{2}+\ldots \\ =1+\frac{2}{3} x-\frac{4}{9} x^{2}+\ldots \end{array} \\ \begin{aligned} \text { Next term } & =\frac{\frac{1}{3} \cdot\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(2 x)^{3} \\ = & \frac{40}{81} x^{3} \end{aligned} \end{gathered}$ Valid for $-1<2 x<1$ $\Rightarrow-1 / 2<x<1 / 2$	M1 A1 E1 M1 A1 B1 [6]	binomial expansion correct unsimplified expression simplification www
$\begin{array}{ll} \mathbf{3} & 4 \mathbf{j}-3 \mathbf{k}=\lambda \mathbf{a}+\mu \mathbf{b} \\ & =\lambda(2 \mathbf{i}+\mathbf{j}-\mathbf{k})+\mu(4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \\ \Rightarrow & 0=2 \lambda+4 \mu \\ & 4=\lambda-2 \mu \\ & -3=-\lambda+\mu \\ \Rightarrow & \lambda=-2 \mu, 2 \lambda=4 \Rightarrow \lambda=2, \mu=-1 \end{array}$	M1 M1 A1 A1, A1 [5]	equating components at least two correct equations
4 $\begin{aligned} \text { LHS }= & \cot \beta-\cot \alpha \\ & =\frac{\cos \beta}{\sin \beta}-\frac{\cos \alpha}{\sin \alpha} \\ & =\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\sin \alpha \sin \beta} \\ & =\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta} \end{aligned}$ OR $\begin{gathered} \mathrm{RHS}=\frac{\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta}=\frac{\sin \alpha \cos \beta}{\sin \alpha \sin \beta}-\frac{\cos \alpha \sin \beta}{\sin \alpha \sin \beta}}{=\cot \beta-\cot \alpha} \end{gathered}$	M1 M1 E1 M1 M1 E1 [3]	$\cot =\cos / \sin$ combining fractions www using compound angle formula splitting fractions using cot=cos/sin

5(i) Normal vectors $\left(\begin{array}{l}2 \\ -1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ -1\end{array}\right)$ Angle between planes is θ, where $\begin{aligned} \cos \theta & =\frac{2 \times 1+(-1) \times 0+1 \times(-1)}{\sqrt{2^{2}+(-1)^{2}+1^{2}} \sqrt{1^{2}+0^{2}+(-1)^{2}}} \\ & =1 / \sqrt{ } 12 \\ \Rightarrow \quad \theta & =73.2^{\circ} \text { or } 1.28 \mathrm{rads} \end{aligned}$	B1 M1 M1 A1 [4]	scalar product finding invcos of scalar product divided by two modulae
So point of intersection is $(1,1 / 2,1 / 2)$	B1 M1 A1 A1 [4]	
6(i) $\begin{aligned} & \cos \theta+\sqrt{3} \sin \theta=r \cos (\theta-\alpha) \\ & \quad \quad=R \cos \theta \cos \alpha+R \sin \theta \sin \alpha \\ & \Rightarrow R \cos \alpha=1, R \sin \alpha=\sqrt{3} \\ & \Rightarrow R^{2}=1^{2}+(\sqrt{ } 3)^{2}=4, R=2 \\ & \tan \alpha=\sqrt{3} \\ & \Rightarrow \alpha=\pi / 3 \end{aligned}$	B1 M1 M1 A1 [4]	$R=2$ equating correct pairs $\tan \alpha=\sqrt{3} \text { o.e. }$
(ii) derivative of $\tan \theta$ is $\sec ^{2} \theta$ $\begin{aligned} \int_{0}^{\frac{\pi}{3}} \frac{1}{(\cos \theta+\sqrt{3} \sin \theta)^{2}} d \theta=\int_{0}^{\frac{\pi}{3}} \frac{1}{4} & \sec ^{2}\left(\theta-\frac{\pi}{3}\right) d \theta \\ & =\left[\frac{1}{4} \tan \left(\theta-\frac{\pi}{3}\right)\right]_{0}^{\frac{\pi}{3}} \\ & =1 / 4(0-(-\sqrt{ } 3)) \\ & =\sqrt{ } 3 / 4 * \end{aligned}$	B1 M1 A1 E1 [4]	ft their α $\frac{1}{R^{2}}[\tan (\theta-\pi / 3] \mathrm{ft} \text { their } \mathrm{R}, \alpha(\text { in radians })$ www

Section B

7(i) (A) $9 / 1.5=6$ hours (B) $18 / 1.5=12$ hours	B1 B1 [2]	
$\text { (ii) } \begin{aligned} & \frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k\left(\theta-\theta_{0}\right) \\ & \Rightarrow \quad \int \frac{d \theta}{\theta-\theta_{0}}=\int-k d t \\ & \Rightarrow \quad \ln \left(\theta-\theta_{0}\right)=-k t+c \\ & \theta-\theta_{0}=e^{-k t+c} \\ & \theta=\theta_{0}+A e^{-k t *} \end{aligned}$	M1 A1 A1 M1 E1 [5]	separating variables $\ln \left(\theta-\theta_{0}\right)$ $-k t+c$ anti-logging correctly(with c) $A=e^{c}$
$\begin{gathered} \text { (iii) } \quad \begin{array}{l} 98=50+A \mathrm{e}^{0} \\ \Rightarrow \quad A=48 \end{array} \\ \text { Initially } \frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k(98-50)=-48 k=-1.5 \\ \Rightarrow \quad k=0.03125^{*} \end{gathered}$	M1 A1 M1 E1 [4]	
(iv) $\begin{aligned} & \text { (A) } 89=50+48 e^{-0.03125 t} \\ & \Rightarrow \quad 39 / 48=\mathrm{e}^{-0.03125 t} \\ & \Rightarrow \quad t=\ln (39 / 48) /(-0.03125)=6.64 \text { hours } \end{aligned}$ $\begin{aligned} & \text { (B) } 80=50+48 e^{-0.03125 t} \\ & \Rightarrow \quad 30 / 48=\mathrm{e}^{-0.03125 t} \\ & \Rightarrow \quad t=\ln (30 / 48) /(-0.03125)=15 \text { hours } \end{aligned}$	M1 M1 A1 M1 A1 [5]	equating taking lns correctly for either
(v) Models disagree more for greater temperature loss	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	

$\text { 8(i) } \begin{aligned} \frac{d y}{d \theta} & =2 \cos 2 \theta-2 \sin \theta, \frac{d x}{d \theta}=2 \cos \theta \\ \frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{2 \cos 2 \theta-2 \sin \theta}{2 \cos \theta}=\frac{\cos 2 \theta-\sin \theta}{\cos \theta} \end{aligned}$	B1, B1 M1 A1 [4]	substituting for theirs oe
$\begin{aligned} & \text { (ii) When } \theta=\pi / 6, \begin{aligned} \frac{d y}{d x}= & \frac{\cos \pi / 3-\sin \pi / 6}{\cos \pi / 6} \\ & =\frac{1 / 2-1 / 2}{\sqrt{3} / 2}=0 \end{aligned} \\ & \text { Coords of B: } x=2+2 \sin (\pi / 6)=3 \\ & y= \end{aligned} \begin{aligned} & 2 \cos (\pi / 6)+\sin (\pi / 3)=3 \sqrt{ } 3 / 2 \end{aligned} \quad \begin{aligned} \mathrm{BC}=2 \times 3 \sqrt{ } 3 / 2 & =3 \sqrt{ } 3 \end{aligned}$	E1 M1 A1,A1 B1ft [5]	for either exact
(iii) (A) $\begin{aligned} y & =2 \cos \theta+\sin 2 \theta \\ & =2 \cos \theta+2 \sin \theta \cos \theta \\ & =2 \cos \theta(1+\sin \theta) \\ & =x \cos \theta^{*} \end{aligned}$ $\begin{aligned} (B) \sin \theta & =1 / 2(x-2) \\ \cos ^{2} \theta & =1-\sin ^{2} \theta \\ & =1-1 / 4(x-2)^{2} \\ & =1-1 / 4 x^{2}+x-1 \\ & =\left(x-1 / 4 x^{2}\right)^{*} \end{aligned}$ (C) Cartesian equation is y $\begin{aligned} y^{2} & =x^{2} \cos ^{2} \theta \\ & =x^{2}\left(x-1 / 4 x^{2}\right) \\ & =x^{3}-1 / 4 x^{4} * \end{aligned}$	M1 E1 B1 M1 E1 M1 E1 [7]	$\sin 2 \theta=2 \sin \theta \cos \theta$ squaring and substituting for x
$\text { (iv) } \begin{aligned} V & =\int_{0}^{4} \pi y^{2} d x \\ & =\pi \int_{0}^{4}\left(x^{3}-\frac{1}{4} x^{4}\right) d x \\ & =\pi\left[\frac{1}{4} x^{4}-\frac{1}{20} x^{5}\right]_{0}^{4} \\ & =\pi(64-51.2) \\ & =12.8 \pi=40.2\left(\mathrm{~m}^{3}\right) \end{aligned}$	M1 B1 A1 [3]	need limits $\left[\frac{1}{4} x^{4}-\frac{1}{20} x^{5}\right]$ 12.8π or 40 or better.

Comprehension

1	$\begin{aligned} & \frac{400 \pi d}{1000}=10 \\ & d=\frac{25}{\pi}=7.96 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { E1 } \end{aligned}$	
2	$\begin{aligned} & V=\pi 20^{2} h+\frac{1}{2}\left(\pi 20^{2} H-\pi 20^{2} h\right) \\ & =\frac{1}{2}\left(\pi 20^{2} H+\pi 20^{2} h\right) \mathrm{cm}^{3}=200 \pi(H+h) \mathrm{cm}^{3} \\ & =\frac{1}{5} \pi(H+h) \text { litres } \end{aligned}$	M1 M1 E1	divide by 1000
3	$\begin{aligned} & H=5+40 \tan 30^{\circ} \text { or } H=h+40 \tan \theta \\ & V=\frac{1}{5} \pi(H+h)=\frac{1}{5} \pi\left(10+40 \tan 30^{\circ}\right) \\ & =20.8 \text { litres } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	or evaluated including substitution values
4	$\begin{aligned} & V=\frac{1}{2} \times 80 \times(40+5) \\ & \times 30 \mathrm{~cm}^{3}= 54000 \mathrm{~cm}^{3} \\ &=54 \mathrm{litres} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\times 30$
5	(i) Accurate algebraic simplification to give $y^{2}-160 y+400=0$ (ii) Use of quadratic formula (or other method) to find other root: $d=157.5 \mathrm{~cm}$. This is greater than the height of the tank so not possible	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	
6	$y=10$ Substitute for y in (4) : $\begin{aligned} & V=\frac{1}{1000} \int_{0}^{100} 375 \mathrm{~d} x \\ & V=\frac{1}{1000} \times 37500=37.5 * \end{aligned}$	B1 M1 E1 [18]	

4755 (FP1) Further Concepts for Advanced Mathematics

Section A

\begin{tabular}{|c|c|c|c|}
\hline 1(i)

1(ii) \& $$
\begin{aligned}
& z=\frac{6 \pm \sqrt{36-40}}{2} \\
& \Rightarrow z=3+\mathrm{j} \text { or } z=3-\mathrm{j} \\
& |3+\mathrm{j}|=\sqrt{10}=3.16(3 \text { s.f. }) \\
& \arg (3+\mathrm{j})=\arctan \left(\frac{1}{3}\right)=0.322(3 \text { s.f. }) \\
& \Rightarrow \operatorname{roots} \operatorname{are} \sqrt{10}(\cos 0.322+\mathrm{j} \sin 0.322) \\
& \text { and } \sqrt{10}(\cos 0.322-\mathrm{j} \sin 0.322) \\
& \text { or } \sqrt{ } 10(\cos (-0.322)+\mathrm{j} \sin (-0.322))
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { [2] } \\
\text { M1 } \\
\text { M1 } \\
\\
\text { A1 } \\
{[3]}
\end{gathered}
$$

\] \& | Use of quadratic formula/completing the square |
| :--- |
| For both roots |
| Method for modulus |
| Method for argument (both methods must be seen following A0) |
| One mark for both roots in modulusargument form - accept surd and decimal equivalents and (r, θ) form. Allow $\pm 18.4^{\circ}$ for θ. |

\hline 2 \& \[
$$
\begin{aligned}
& 2 x^{2}-13 x+25=A(x-3)^{2}-B(x-2)+C \\
& \Rightarrow 2 x^{2}-13 x+25 \\
& =A x^{2}-(6 A+B) x+(2 B+C)+9 A \\
& \mathrm{~A}=2 \\
& \mathrm{~B}=1 \\
& \mathrm{C}=5
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 |
| [4] | \& | For $\mathrm{A}=2$ |
| :--- |
| Attempt to compare coefficients of x^{1} or x^{0}, or other valid method. |
| For B and C, cao. |

\hline 3(i) \& \[
\left($$
\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}
$$\right)

\] \& | B1 |
| :--- |
| [1] | \&

\hline 3(ii) \& \& | M1 |
| :--- |
| A1 |
| [2] | \& | Applying matrix to column vectors, with a result. |
| :--- |
| All correct |

\hline 3(iii) \& | Stretch factor 4 in x-direction. |
| :--- |
| Stretch factor 6 in y-direction | \& B1 B1 [2] \& Both factor and direction for each mark. SC1 for "enlargement", not stretch.

\hline
\end{tabular}

4	$\arg (z-(2-2 \mathrm{j}))=\frac{\pi}{4}$	B1 B1 B1 [3]	Equation involving arg(complex variable). Argument $($ complex expression $)=$ $\frac{\pi}{4}$ All correct
5	$\begin{aligned} & \text { Sum of roots }=\alpha+(-3 \alpha)+\alpha+3=3-\alpha=5 \\ & \Rightarrow \alpha=-2 \end{aligned}$ Product of roots $=-2 \times 6 \times 1=-12$ Product of roots in pairs $\begin{aligned} & =-2 \times 6+(-2) \times 1+6 \times 1=-8 \\ & \Rightarrow p=-8 \text { and } q=12 \end{aligned}$ Alternative solution $\begin{aligned} & (x-\alpha)(x+3 \alpha)(x-\alpha-3) \\ & =x^{3}+(\alpha-3) x^{2}+\left(-5 \alpha^{2}-6 \alpha\right) \mathrm{x}+3 \alpha^{3}+9 \alpha^{2} \\ & =\quad \alpha=-2, \\ & \quad \quad p=-8 \text { and } q=12 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \\ \\ \text { A1 } \\ \text { A1 } \\ {[6]} \\ \text { M1 } \\ \text { M1A1 } \\ \text { M1 } \\ \text { A1A1 } \\ \text { [6] } \end{gathered}$	Use of sum of roots Attempt to use product of roots Attempt to use sum of products of roots in pairs One mark for each, ft if α incorrect Attempt to multiply factors Matching coefficient of x^{2},cao. Matching other coefficients One mark for each, ft incorrect α.
6	$\begin{aligned} & \sum_{r=1}^{n}\left[r\left(r^{2}-3\right)\right]=\sum_{r=1}^{n} r^{3}-3 \sum_{r=1}^{n} r \\ & =\frac{1}{4} n^{2}(n+1)^{2}-\frac{3}{2} n(n+1) \\ & =\frac{1}{4} n(n+1)(n(n+1)-6) \\ & =\frac{1}{4} n(n+1)\left(n^{2}+n-6\right)=\frac{1}{4} n(n+1)(n+3)(n-2) \end{aligned}$	M1 M1 A2 M1 A1 [6]	Separate into separate sums. (may be implied) Substitution of standard result in terms of n. For two correct terms (indivisible) Attempt to factorise with $n(n+1)$. Correctly factorised to give fully factorised form

$7 \quad$ When $n=1,6\left(3^{n}-1\right)=12$, so true for $n=1$
Assume true for $n=k$
$12+36+108+\ldots .+\left(4 \times 3^{k}\right)=6\left(3^{k}-1\right)$
$\Rightarrow 12+36+108+\ldots . .+\left(4 \times 3^{k+1}\right)$
$=6\left(3^{k}-1\right)+\left(4 \times 3^{k+1}\right)$
$=6\left[\left(3^{k}-1\right)+\frac{2}{3} \times 3^{k+1}\right]$
$=6\left[3^{k}-1+2 \times 3^{k}\right]$
$=6\left(3^{k+1}-1\right)$
But this is the given result with $k+1$ replacing
k. Therefore if it is true for $n=k$, it is true for $n=k+1$.

Since it is true for $n=1$, it is true for $n=1,2$,
3 ... and so true for all positive integers.

B1

Assume true for k

Add correct next term to both sides
Attempt to factorise with a factor 6
c.a.o. with correct simplification

Dependent on A1 and first E1
Dependent on B1 and second E1

Section B Total: 36
Total: 72

4756 (FP2) Further Methods for Advanced Mathematics

$\begin{array}{r} 1 \\ \text { (a)(i) } \end{array}$	$f(x)=\cos x$ $f(0)=1$ $f^{\prime}(x)=-\sin x$ $f^{\prime}(0)=0$ $f^{\prime \prime}(x)=-\cos x$ $f^{\prime \prime}(0)=-1$ $f^{\prime \prime \prime}(x)=\sin x$ $f^{\prime \prime \prime}(0)=0$ $f^{\prime \prime \prime \prime}(x)=\cos x$ $f^{\prime \prime \prime}(0)=1$ \Rightarrow $\cos x=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4} \ldots$	M1 A1 A1 A1 (ag) 4	Derivatives cos, sin, cos, sin, cos Correct signs Correct values. Dep on previous A1 www
(ii)	$\begin{array}{ll} & \cos x \times \sec x=1 \\ \Rightarrow & \left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right)\left(1+a x^{2}+b x^{4}\right)=1 \\ \Rightarrow & 1+\left(a-\frac{1}{2}\right) x^{2}+\left(b-\frac{1}{2} a+\frac{1}{24}\right) x^{4}=1 \\ \Rightarrow & a-\frac{1}{2}=0, b-\frac{1}{2} a+\frac{1}{24}=0 \\ \Rightarrow & a=\frac{1}{2} \\ & b=\frac{5}{24} \end{array}$	E1 M1 A1 B1 B1	o.e. Multiply to obtain terms in x^{2} and x^{4} Terms correct in any form (may not be collected) Correctly obtained by any method: must not just be stated Correctly obtained by any method
(b)(i)	$\begin{aligned} & y=\arctan \frac{x}{a} \\ \Rightarrow & x=a \tan y \\ \Rightarrow & \frac{d x}{d y}=a \sec ^{2} y \\ \Rightarrow & \frac{d x}{d y}=a\left(1+\tan ^{2} y\right) \\ \Rightarrow & \frac{d y}{d x}=\frac{a}{a^{2}+x^{2}} \end{aligned}$	M1 A1 A1 A1 (ag)	(a) $\tan y=$ and attempt to differentiate both sides Or $\sec ^{2} y \frac{d y}{d x}=\frac{1}{a}$ Use $\sec ^{2} y=1+\tan ^{2} y$ o.e. www SC1: Use derivative of $\arctan x$ and Chain Rule (properly shown)
(ii)(A)	$\begin{aligned} & \int_{-2}^{2} \frac{1}{4+x^{2}} d x=\left[\frac{1}{2} \arctan \frac{x}{2}\right]_{-2}^{2} \\ & =\frac{\pi}{4} \end{aligned}$	M1 A1 A1 3	arctan alone, or any tan substitution $\frac{1}{2}$ and $\frac{x}{2}$, or $\int \frac{1}{2} d \theta$ without limits Evaluated in terms of π
(ii)(B)	$\begin{aligned} & \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4}{1+4 x^{2}} d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{4}+x^{2} \\ & =[2 \arctan (2 x)]_{-\frac{1}{2}}^{\frac{1}{2}} \\ & =\pi \end{aligned}$	$\begin{array}{\|ll} \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & \\ & 3 \end{array}$	arctan alone, or any tan substitution 2 and $2 x$, or $\int 2 d \theta$ without limits Evaluated in terms of π

2 (i)	$\begin{aligned} & \text { Modulus }=1 \\ & \text { Argument }=\frac{\pi}{3} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ & 2 \end{array}$	Must be separate Accept $60^{\circ}, 1.05^{\circ}$
(ii)	回" 2 $\begin{aligned} & a=2 e^{\frac{j \pi}{4}} \\ & \arg b=\frac{\pi}{4} \pm \frac{\pi}{3} \\ & b=2 e^{-\frac{j \pi}{12}}, 2 e^{\frac{7 j \pi}{12}} \end{aligned}$	$\begin{array}{\|ll\|} \hline \mathrm{G} 2,1,0 \\ \mathrm{~B} 1 & \\ \text { M1 } & \\ \text { A1ft } & \\ \hline & \\ \hline \end{array}$	G2: A in first quadrant, argument $\approx \frac{\pi}{4}$ B in second quadrant, same mod B^{\prime} in fourth quadrant, same mod Symmetry G1: 3 points and at least 2 of above, or $\mathrm{B}, \mathrm{B}^{\prime}$ on axes, or BOB^{\prime} straight line, or BOB^{\prime} reflex Must be in required form (accept $r=2, \theta=\pi / 4$) Rotate by adding (or subtracting) $\pi / 3$ to (or from) argument. Must be $\pi / 3$ Both. Ft value of r for a. Must be in required form, but don't penalise twice
(iii)	$\begin{aligned} & z_{1}^{6}=\left(\sqrt{2} e^{\frac{j \pi}{3}}\right)^{6}=(\sqrt{2})^{6} e^{2 j \pi} \\ & =8 \end{aligned}$ Others are $r e^{j \theta}$ where $r=\sqrt{2}$ and $\theta=-\frac{2 \pi}{3},-\frac{\pi}{3}, 0, \frac{2 \pi}{3}, \pi$	M1 A1 (ag) M1 A1 G1 G1	$(\sqrt{2})^{6}=8 \text { or } \frac{\pi}{3} \times 6=2 \pi \text { seen }$ www "Add" $\frac{\pi}{3}$ to argument more than once Correct constant r and five values of θ. Accept θ in $[0,2 \pi]$ or in degrees 6 points on vertices of regular hexagon Correctly positioned (2 roots on real axis). Ignore scales SC 1 if G0 and 5 points correctly plotted
(iv)	$\begin{aligned} & w=z_{1} e^{-\frac{j \pi}{12}}=\sqrt{2} e^{\frac{j \pi}{3}} e^{-\frac{j \pi}{12}}=\sqrt{2} e^{\frac{j \pi}{4}} \\ & =\sqrt{2}\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right) \\ & =1+j \end{aligned}$	M1 A1 G1 3	$\arg w=\frac{\pi}{3}-\frac{\pi}{12}$ Or B2 Same modulus as z_{1}
(v)	$\begin{aligned} & w^{6}=\left(\sqrt{2} e^{\frac{j \pi}{4}}\right)^{6}=8 e^{\frac{3 j \pi}{2}} \\ & =-8 j \end{aligned}$	M1 A1 2	$\text { Or } z_{1}^{6} e^{-\frac{j \pi}{2}}=8 e^{-\frac{j \pi}{2}}$ cao. Evaluated

3(a)(i)		$\begin{array}{\|ll} \text { G1 } & \\ \text { G1 } & \\ \text { G1 } & \\ & 3 \\ \hline \end{array}$	r increasing with θ Correct for $0 \leq \theta \leq \pi / 3$ (ignore extra) Gradient less than 1 at O
(ii)	$\begin{aligned} & \text { Area }=\int_{0}^{\frac{\pi}{4}} \frac{1}{2} r^{2} d \theta=\frac{1}{2} a^{2} \int_{0}^{\frac{\pi}{4}} \tan ^{2} \theta d \theta \\ & =\frac{1}{2} a^{2} \int_{0}^{\frac{\pi}{4}} \sec ^{2} \theta-1 d \theta \\ & =\frac{1}{2} a^{2}[\tan \theta-\theta]_{0}^{\frac{\pi}{4}} \\ & =\frac{1}{2} a^{2}\left(1-\frac{\pi}{4}\right) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { G1 } & 5 \end{array}$	Integral expression involving $\tan ^{2} \theta$ Attempt to express $\tan ^{2} \theta$ in terms of $\sec ^{2} \theta$ $\tan \theta-\theta$ and limits $0, \frac{\pi}{4}$ A0 if e.g. triangle - this answer Mark region on graph
(b)(i)	Characteristic equation is $\begin{aligned} & (0.2-\lambda)(0.7-\lambda)-0.24=0 \\ \Rightarrow & \lambda^{2}-0.9 \lambda-0.1=0 \\ \Rightarrow & \lambda=1,-0.1 \end{aligned}$ When $\lambda=1,\left(\begin{array}{cc}-0.8 & 0.8 \\ 0.3 & -0.3\end{array}\right)\binom{x}{y}=\binom{0}{0}$ $\Rightarrow \quad-0.8 x+0.8 y=0,0.3 x-0.3 y=0$ $\Rightarrow \quad x-y=0, \text { eigenvector is }\binom{1}{1} \text { o.e. }$ When $\lambda=-0.1,\left(\begin{array}{ll}0.3 & 0.8 \\ 0.3 & 0.8\end{array}\right)\binom{x}{y}=\binom{0}{0}$ $\Rightarrow \quad 0.3 x+0.8 y=0$ $\Rightarrow \quad \text { eigenvector is }\binom{8}{-3} \text { o.e. }$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ & 6 \end{array}$	$(\mathbf{M}-\lambda \mathbf{I}) \boldsymbol{x}=\boldsymbol{x}$ M0 below At least one equation relating x and y At least one equation relating x and y
(ii)	$\begin{aligned} & \mathbf{Q}=\left(\begin{array}{cc} 1 & 8 \\ 1 & -3 \end{array}\right) \\ & \mathbf{D}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -0.1 \end{array}\right) \end{aligned}$	B1ft B1ft B1	B0 if \mathbf{Q} is singular. Must label correctly If order consistent. Dep on B1B1 earned

$\begin{array}{r} 4 \\ \text { (a)(i) } \end{array}$	$\begin{aligned} & \cosh ^{2} x=\left[\frac{1}{2}\left(e^{x}+e^{-x}\right)\right]^{2}=\frac{1}{4}\left(e^{2 x}+2+e^{-2 x}\right) \\ & \sinh ^{2} x=\left[\frac{1}{2}\left(e^{x}-e^{-x}\right)\right]^{2}=\frac{1}{4}\left(e^{2 x}-2+e^{-2 x}\right) \\ & \cosh ^{2} x-\sinh ^{2} x=\frac{1}{4}(2+2)=1 \end{aligned}$	M1 A1 (ag) 2	Both expressions (M0 if no "middle" term) and subtraction www
	$\text { OR } \begin{aligned} \cosh x+\sinh x & =e^{x} \\ \cosh x-\sinh x & =e^{-x} \\ \cosh ^{2} x-\sinh ^{2} x & =e^{x} \times e^{-x}=1 \end{aligned}$		Both, and multiplication Completion
(ii)(A)	$\begin{aligned} & \cosh x=\sqrt{1+\sinh ^{2} x}=\sqrt{1+\tan ^{2} y} \\ & =\sec y \\ \Rightarrow \quad \tanh x= & \frac{\sinh x}{\cosh x}=\frac{\tan y}{\sec y}=\sin y \end{aligned}$	M1 A1 A1 (ag) 3	$\begin{aligned} & \text { Use of } \cosh ^{2} x=1+\sinh ^{2} x \text { and } \sinh x \\ & =\tan y \\ & \text { www } \end{aligned}$
(ii)(B)	$\begin{aligned} & \operatorname{arsinh} x=\ln \left(x+\sqrt{1+x^{2}}\right) \\ \Rightarrow & \operatorname{arsinh}(\tan y)=\ln \left(\tan y+\sqrt{1+\tan ^{2} y}\right) \\ \Rightarrow & x=\ln (\tan y+\sec y) \end{aligned}$	M1 A1 A1 (ag) 3	Attempt to use \ln form of arsinh www
	$\begin{aligned} & \text { OR } \quad \sinh x=\tan y \Rightarrow \frac{e^{x}-e^{-x}}{2}=\tan y \\ & \Rightarrow \\ & \Rightarrow \quad e^{2 x}-2 e^{x} \tan y-1=0 \\ & \Rightarrow \\ & \Rightarrow \quad e^{x}=\tan y \pm \sqrt{\tan ^{2} y+1} \\ & \Rightarrow \quad x=\ln (\tan y+\sec y) \end{aligned}$		Arrange as quadratic and solve for e^{x} o.e. www
(b)(i)	$\begin{aligned} & \quad y=\operatorname{artanh} x \Rightarrow x=\tanh y \\ & \Rightarrow \quad \frac{d x}{d y}=\operatorname{sech}^{2} y \\ & \Rightarrow \quad \frac{d y}{d x}=\frac{1}{\operatorname{sech}^{2} y}=\frac{1}{1-\tanh ^{2} y}=\frac{1}{1-x^{2}} \\ & \text { Integral }=[\operatorname{artanh} x]_{-\frac{1}{2}}^{\frac{1}{2}} \\ & \quad=2 \operatorname{artanh} \frac{1}{2} \end{aligned}$	M1 A1 M1 A1 (ag) 4	$\tanh y=$ and attempt to differentiate Or sech $2 y \frac{d y}{d x}=1$ Or B2 for $\frac{1}{1-x^{2}}$ www artanh or any tanh substitution www
(ii)	$\begin{aligned} & \frac{1}{1-x^{2}}=\frac{1}{(1-x)(1+x)}=\frac{A}{1-x}+\frac{B}{1+x} \\ \Rightarrow & 1=A(1+x)+B(1-x) \\ \Rightarrow & A=1 / 2, B=1 / 2 \\ \Rightarrow & \int \frac{1}{1-x^{2}} d x=\int \frac{1}{2} \frac{\frac{1}{2}}{1-x}+\frac{1}{1+x} d x \\ & =-\frac{1}{2} \ln \|1-x\|+\frac{1}{2} \ln \|1+x\|+c \text { or } \frac{1}{2} \ln \left\|\frac{1+x}{1-x}\right\|+c \text { o.e. } \end{aligned}$	M1 A1 M1 A1 4	Correct form of partial fractions and attempt to evaluate constants Log integrals www. Condone omitted modulus signs and constant After 0 scored, SC1 for correct answer
(iii)	$\begin{aligned} & \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1-x^{2}} d x=\left[-\frac{1}{2} \ln \|1-x\|+\frac{1}{2} \ln \|1+x\|\right]_{-\frac{1}{2}}^{\frac{1}{2}}=\ln 3 \\ \Rightarrow & 2 \operatorname{artanh} \frac{1}{2}=\ln 3 \Rightarrow \operatorname{artanh} \frac{1}{2}=\frac{1}{2} \ln 3 \end{aligned}$	M1 A1 (ag)	Substitution of $1 / 2$ and $-1 / 2$ seen anywhere (or correct use of $0,1 / 2$) www

| 5 (i) | | |
| :--- | :--- | :--- | :--- |

4758 Differential Equations

(iv) At greatest depth, $v=0$
$\Rightarrow e^{-t}=\frac{4.9}{18.61} \Rightarrow t=1.3345$
Depth $=\int_{0}^{1.3345}\left(18.61 e^{-t}-4.9\right) d t$
$=\left[-18.61 e^{-t}-4.9 t\right]_{0}^{1.3345}$
$=7.17 \mathrm{~m}$
4(i) $\left.\begin{array}{c}-3 x-y+7=0 \\ 2 x-y+2=0\end{array}\right\} \Leftrightarrow \begin{aligned} & x=1 \\ & y=4\end{aligned}$
,
A1 All correct

4761 Mechanics 1

Q1		Mark	Comment	Sub
(i)	$6 \mathrm{~m} \mathrm{~s}^{-1}$ $4 \mathrm{~m} \mathrm{~s}^{-2}$	B1 B1	Neglect units. Neglect units.	
(ii)	$v(5)=6+4 \times 5=26$ $s(5)=6 \times 5+0.5 \times 4 \times 25=80$ so 80 m	B1 M1 A1	Or equiv. FT (i) and their $v(5)$ where necessary. cao	
(iii)	distance is $80+$ $26 \times(15-5)+0.5 \times 3 \times(15-5)^{2}$ $=490 \mathrm{~m}$	M1 M1	Their $80+$ attempt at distance with $a=3$ Appropriate uvast. Allow $t=15$. FT their $\mathrm{v}(5)$. cao	

Q2		Mark	Comment	Sub
(i)	When $t=2$, velocity is $6+4 \times 2=14$	M1	Recognising that areas under graph represent changes in velocity in (i) or (ii) or equivalent uvast.	
(ii)	Require velocity of -6 so must inc by -20 $-8 \times(t-2)=-20$ so $t=4.5$	M1	FT $\pm(6+$ their 14) used in any attempt at area/ uvast FT their 14 [Award SC2 for 4.5 WW and SC1 for 2.5 WW$]$	2
		4		2

Q 3		Mark	Comment	Sub
(i)	$\mathbf{F}+\binom{-4}{8}=6\binom{2}{3}$ $\mathbf{F}=\binom{16}{10}$	M1 B1 B1 A1	N2L. $F=m a$. All forces present Addition to get resultant. May be implied. For $\mathbf{F} \pm\binom{-4}{8}=6\binom{2}{3}$. SC 4 for $\mathbf{F}=\binom{16}{10}$ WW. If magnitude is given, final mark is lost unless vector answer is clearly intended.	4
(ii)	$\begin{aligned} & \arctan \left(\frac{16}{10}\right) \\ & 57.994 \ldots \text { so } 58.0^{\circ} \text { (3 s. f.) } \end{aligned}$	M1 A1	Accept equivalent and FT their F only. Do not accept wrong angle. Accept $360-\arctan \left(\frac{16}{10}\right)$ cao. Accept 302° (3 s.f.)	2
		6		

Q4		Mark	Comment	Sub
	either We need $3.675=9.8 t-4.9 t^{2}$ Solving $4 t^{2}-8 t+3=0$ gives $t=0.5$ or $t=1.5$ or Time to greatest height $0=35 \times 0.28-9.8 t \text { so } t=1$ Time to drop is 0.5 total is 1.5 s then Horiz distance is $35 \times 0.96 t$ So distance is $35 \times 0.96 \times 1.5=50.4 \mathrm{~m}$	$\begin{aligned} & \text { *M1 } \\ & \text { M1* } \\ & \text { A1 } \\ & \text { F1 } \\ & \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Equating given expression or their attempt at y to ± 3.675. If they attempt y, allow sign errors, $g=9.81$ etc. and $u=35$. Dependent. Any method of solution of a 3 term quadratic. cao. Accept only the larger root given Both roots shown and larger chosen provided both +ve . Dependent on $1^{\text {st }} \mathrm{M} 1$. [Award M1 M1 A1 for 1.5 seen WW] Complete method for total time from motion in separate parts. Allow sign errors, $g=9.81$ etc. Allow $u=35$ initially only. Time for $1^{\text {st }}$ part Time for $2^{\text {nd }}$ part cao Use of $x=u \cos \alpha t$. May be implied. FT their quoted t provided it is positive.	6
		6		

Q5		Mark	Comment	Sub
(i)	For the parcel\uparrow N2L $55-5 g=5 a$ $a=1.2$ so $1.2 \mathrm{~m} \mathrm{~s}^{-2}$	A1	Applying N2L to the parcel. Correct mass. Allow $F=m g a$. Condone missing force but do not allow spurious forces. Allow only sign error(s). Allow -1.2 only if sign convention is clear.	3
(ii)	$R-80 g=80 \times 1.2$ or $R-75 g-55=75 \times 1.2$ $R=880$ so 880 N	A1	M2L. Must have correct mass. Allow only sign errors. FT their a cao [NB beware spurious methods giving 880 N$]$	2

Q6		Mark	Comment	Sub
	Method 1 $\uparrow v_{\mathrm{A}}=29.4-9.8 T \quad \downarrow v_{\mathrm{B}}=9.8 T$ For same speed $29.4-9.8 T=9.8 T$ so $T=1.5$ and $V=14.7$ $\begin{aligned} H= & 29.4 \times 1.5-0.5 \times 9.8 \times 1.5^{2} \\ & +0.5 \times 9.8 \times 1.5^{2} \\ = & 44.1 \end{aligned}$ Method 2 $V^{2}=29.4^{2}-2 \times 9.8 \times x=2 \times 9.8 \times(H-x)$ $29.4^{2}=19.6 H$ so $H=44.1$ Relative velocity is 29.4 so $T=\frac{44.1}{29.4}$ Using $v=u+a t$ $V=0+9.8 \times 1.5=14.7$	M1 A1 M1 E1 F1 M1 A1 M1 B1 A1 M1 E1 M1 F1	Either attempted. Allow sign errors and $g=9.81$ etc Both correct Attempt to equate. Accept sign errors and $T=1.5$ substituted in both. If 2 subs there must be a statement about equality FT T or V, whichever is found second Sum of the distance travelled by each attempted cao Attempts at V^{2} for each particle equated. Allow sign errors, 9.81 etc Allow h_{1}, h_{2} without $h_{1}=H-h_{2}$ Both correct. Require $h_{1}=H-h_{2}$ but not an equation. cao Any method that leads to T or V Any method leading to the other variable Other approaches possible. If 'clever' ways seen, reward according to weighting above.	
		7		

Q7		Mark	Comment	Sub
	Diagram Resolve $\rightarrow 121 \cos 34-F=0$ $F=100.313 \ldots \text { so } 100 \mathrm{~N}(3 \text { s. f. })$ Resolve $\uparrow R+121 \sin 34-980=0$ $R=912.337 \ldots \text { so } 912 \mathrm{~N}(3 \mathrm{s.} \mathrm{f.})$	B1 B1 M1 E1 M1 B1 A1	Weight, friction and 121 N present with arrows. All forces present with suitable labels. Accept W, $m g, 100 g$ and 980 . No extra forces. Resolving horiz. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. Some evidence required for the show, e.g. at least 4 figures. Accept \pm. Resolve vert. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$ and sign errors. All correct	7
(ii)	It will continue to move at a constant speed of $0.5 \mathrm{~m} \mathrm{~s}^{-1}$.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Accept no reference to direction Accept no reference to direction [Do not isw: conflicting statements get zero]	2
(iii)	Using N2L horizontally $155 \cos 34-95=100 a$ $a=0.335008 \ldots \text { so } 0.335 \mathrm{~m} \mathrm{~s}^{-2}(3 \mathrm{~s} . \mathrm{f} .)$	M1 A1 A1	Use of N2L. Allow $F=m g a, F$ omitted and 155 not resolved. Use of $F=m a$ with resistance and T resolved. Allow $s \leftrightarrow c$ and signs as the only errors.	3
(iv)	$a=5 \div 2=2.5$ N2L down the slope $100 g \sin 26-F=100 \times 2.5$ $F=179.603 \ldots \text { so } 180 \text { N (} 3 \text { s. f. })$	M1 A1 M1 B1 A1	Attempt to find a from information $F=m a$ using their "new" a. All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors. Weight term resolved correctly, seen in an equn or on a diagram. cao. Accept -180 N if consistent with direction of F on their diagram	5
		17		

Q8		Mark	Comment	Sub
(1)	$v_{x}=8-4 t$ $v_{x}=0 \Leftrightarrow t=2$ so at $t=2$	M1 A1 F1	either Differentiating or Finding ' u ' and ' a ' from x and use of $v=u+a t$ FT their $v_{x}=0$	3
(ii)	$\begin{aligned} & y=\int\left(3 t^{2}-8 t+4\right) \mathrm{d} t \\ & =t^{3}-4 t^{2}+4 t+c \\ & y=3 \text { when } t=1 \text { so } 3=1-4+4+c \\ & \text { so } c=3-1=2 \text { and } y=t^{3}-4 t^{2}+4 t+2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	Integrating v_{y} with at least one correct integrated term. All correct. Accept no arbitrary constant. Clear evidence Clearly shown and stated	4
(iii)	$\begin{aligned} & \text { We need } x=0 \text { so } 8 t-2 t^{2}=0 \\ & \text { so } t=0 \text { or } t=4 \\ & t=0 \text { gives } y=2 \text { so } 2 \mathrm{~m} \\ & t=4 \text { gives } y=4^{3}-4^{3}+16+2=18 \text { so } 18 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	May be implied. Must have both Condone 2j Condone 18j	4
(iv)	We need $v_{x}=v_{y}=0$ From above, $v_{x}=0$ only when $t=2$ so evaluate $v_{y}(2)$ $v_{y}(2)=0[(t-2)$ is a factor] so yes only at $t=2$ At $t=2$, the position is $(8,2)$ Distance is $\sqrt{8^{2}+2^{2}}=\sqrt{68} \mathrm{~m}(8.253$ s.f. $)$	M1 M1 A1 B1 B1	either Recognises $v_{x}=0$ when $t=2$ or Finds time(s) when $v_{y}=0$ or States or implies $v_{x}=v_{y}=0$ Considers $v_{x}=0$ and $v_{y}=0$ with their time(s) $t=2$ recognised as only value (accept as evidence only $t=2$ used below). For the last 2 marks, no credit lost for reference to $t=\frac{2}{3}$. May be implied FT from their position. Accept one position followed through correctly.	5
(v)	$t=0,1$ give (0,2) and (6,3)	B1 B1 B1	At least one value $0 \leq t<2$ correctly calc. This need not be plotted Must be $x-y$ curve. Accept sketch. Ignore curve outside interval for t. Accept unlabelled axes. Condone use of line segments. At least three correct points used in $x-y$ graph or sketch. General shape correct. Do not condone use of line segments.	3
		19		

4762 Mechanics 2

Q 1		Mark		Sub
(i)	either $m \times 2 u=5 F$ so $F=0.4 m u$ in direction of the velocity or $a=\frac{2 u}{5}$ so $F=0.4 m u$ in direction of the velocity	M1 A1 A1 M1 A1 A1	Use of $I=F t$ Must have reference to direction. Accept diagram. Use of suvat and N2L May be implied Must have reference to direction. Accept diagram.	3
(ii)	$\begin{aligned} & \mathrm{PCLM} \rightarrow 2 u m+3 u m=m v_{P}+3 m v_{Q} \\ & \mathrm{NEL} \rightarrow v_{Q}-v_{P}=2 u-u=u \\ & \text { Energy } \frac{1}{2} m \times(2 u)^{2}+\frac{1}{2}(3 m) \times u^{2} \\ & =\frac{1}{2} m \times v_{\mathrm{P}}{ }^{2}+\frac{1}{2}(3 m) \times v_{\mathrm{Q}}{ }^{2} \end{aligned}$ Solving to get both velocities $\begin{aligned} & v_{Q}=\frac{3 u}{2} \\ & v_{P}=\frac{u}{2} \end{aligned}$	M1 A1 A1 M1 E1 A1	For 2 equns considering PCLM, NEL or Energy One correct equation Second correct equation Dep on $1^{\text {st }}$ M1. Solving pair of equations. If Energy equation used, allow $2^{\text {nd }}$ root discarded without comment. [If AG subst in one equation to find other velocity, and no more, max SC3]	6
(iii)	either After collision with barrier $v_{\mathrm{Q}}=\frac{3 e u}{2} \leftarrow$ $\text { so } \rightarrow m \frac{u}{2}-3 m \frac{3 e u}{2}=-4 m \frac{u}{4}$ so $e=\frac{1}{3}$ At the barrier the impulse on Q is given by $\rightarrow 3 m\left(-\frac{3 u}{2} \times \frac{1}{3}-\frac{3 u}{2}\right)$ so impulse on Q is $-6 m u \rightarrow$ so impulse on the barrier is $6 m u \rightarrow$	B1 M1 A1 A1 A1 M1 F1 F1 A1	Accept no direction indicated PCLM LHS Allow sign errors. Allow use of $3 m v_{\mathrm{Q}}$. RHS Allow sign errors Impulse is $m(v-u)$ $\pm \frac{3 u}{2} \times \frac{1}{3}$ Allow \pm and direction not clear. FT only e. cao. Direction must be clear. Units not required.	
		18		

Q 2		Mark		Sub
(i)	$\begin{aligned} & R=80 g \cos \theta \text { or } 784 \cos \theta \\ & F_{\max }=\mu R \\ & \text { so } 32 g \cos \theta \text { or } 313.6 \cos \theta \mathrm{~N} \end{aligned}$	B1 M1 A1	Seen	3
(ii)	Distance is $\frac{1.25}{\sin \theta}$ WD is $F_{\text {max }} d$ so $32 g \cos \theta \times \frac{1.25}{\sin \theta}$ $=\frac{392}{\tan \theta}$	B1 M1 E1	Award for this or equivalent seen	3
(iii)	Δ GPE is $m g h$ so $80 \times 9.8 \times 1.25=980 \mathrm{~J}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept 100 g J	2
(iv)	either $P=F v$ $\text { so }(80 g \sin 35+32 g \cos 35) \times 1.5$ $=1059.85 \ldots \text { so } 1060 \mathrm{~W} \text { (3 s. f.) }$ or $\begin{aligned} & P=\frac{\mathrm{WD}}{\Delta t} \\ & \text { so } \frac{980+\frac{392}{\tan 35}}{\left(\frac{1.25}{\sin 35}\right) \div 1.5} \\ & =1059.85 \ldots \text { so } 1060 \mathrm{~W}(3 \text { s. f. }) \end{aligned}$	M1 B1 A1 A1 M1 B1 B1 A1	Weight term All correct cao Numerator FT their GPE Denominator cao	4
(v)	either Using the W -E equation $\begin{aligned} & 0.5 \times 80 \times v^{2}-0.5 \times 80 \times\left(\frac{1}{2}\right)^{2}=980-\frac{392}{\tan 35} \\ & v=3.2793 . . \text { so yes } \\ & \text { or } \\ & \text { N2L down slope } \\ & a=2.409973 \ldots \end{aligned}$ distance slid, using uvast is $1.815372 \ldots$ vertical distance is $1.815372 \ldots \times \sin 35$ $=1.0412 \ldots<1.25$ so yes	M1 B1 B1 A1 A1 M1 A1 A1 M1 A1	Attempt speed at ground or dist to reach required speed. Allow only init KE omitted KE terms. Allow sign errors. FT from (iv). Both WD against friction and GPE terms. Allow sign errors. FT from parts above. All correct CWO All forces present valid comparison CWO	
		17		

Q 3		Mark		Sub
(i)	$\begin{aligned} & \bar{y}: \quad 250 \times 4+125\left(8+\frac{30}{2} \cos \alpha\right)=375 \bar{y} \\ & \bar{y}=\frac{28}{3}=9 \frac{1}{3} \\ & \bar{z}: \quad(250 \times 0+) 125 \times \frac{30}{2} \sin \alpha=375 \bar{z} \\ & \bar{z}=3 \end{aligned}$	M1 B1 M1 B1 B1 E1 B1 E1	Correct method for \bar{y} or \bar{z} Total mass correct $15 \cos \alpha$ or $15 \sin \alpha$ attempted either part $\begin{aligned} & \left(8+\frac{30}{2} \cos \alpha\right) \\ & 250 \times 4 \end{aligned}$ Accept any form LHS	
(ii)	Yes. Take moments about CD. c.w moment from weight; no a.c moment from table	E1 E1	[Award E1 for $9 \frac{1}{3}>8$ seen or 'the line of action of the weight is outside the base]	2
(iii)	c.m. new part is at $(0,8+20,15)$ $\begin{aligned} & 375 \times \frac{28}{3}+125 \times 28=500 \bar{y} \text { so } \bar{y}=14 \\ & 375 \times 3+125 \times 15=500 \bar{z} \text { so } \bar{z}=6 \end{aligned}$	M1 M1 E1 E1	Either y or z coordinate correct Attempt to 'add' to (i) or start again. Allow mass error.	4
(iv)	Diagram $\begin{aligned} & \text { Angle is } \arctan \frac{6}{14} \\ & =23.1985 \ldots \text { so } 23.2^{\circ}(3 \mathrm{s.f.}) \end{aligned}$	B1 B1 M1 A1	Roughly correct diagram Angle identified (may be implied) Use of tan. Allow use of $14 / 6$ or equivalent. cao	4
		18		

Q 4		mark		sub
(a) (i)	Let the \uparrow forces at P and Q be R_{P} and R_{Q} c.w. moments about P $2 \times 600-3 R_{Q}=0$ so force of $400 \mathrm{~N} \uparrow$ at Q a.c. moments about Q or resolve $R_{\mathrm{P}}=200$ so force of $200 \mathrm{~N} \uparrow$ at P	$\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \text { M1 } \\ \text { A1 } \end{array}$	Moments taken about a named point.	4
(ii)	$R_{\mathrm{P}}=0$ c.w. moments about Q $2 L-1 \times 600=0 \text { so } L=300$	B1 M1 A1	Clearly recognised or used. Moments attempted with all forces. Dep on $R_{\mathrm{P}}=0$ or R_{p} not evaluated.	3
(b) (i)	$\cos \alpha=15 / 17$ or $\sin \alpha=8 / 17$ or $\tan \alpha=8 / 15$ c. w moments about A $\begin{aligned} & 16 \times 340 \cos \alpha-8 R=0 \\ & \text { so } R=600 \end{aligned}$	B1 M1 A1 E1	Seen here or below or implied by use. Moments. All forces must be present and appropriate resolution attempted. Evidence of evaluation.	4
(ii)	Diagram (Solution below assumes all internal forces set as tensions)	B1 B1	Must have $600($ or $R)$ and 340 N and reactions at A. All internal forces clearly marked as tension or thrust. Allow mixture. [Max of B1 if extra forces present]	2
(iii)	B $\downarrow 340 \cos \alpha+T_{\mathrm{BC}} \cos \alpha=0$ so $T_{\mathrm{BC}}=-340$ (Thrust of) 340 N in BC $\mathrm{C} \rightarrow T_{\mathrm{BC}} \sin \alpha-T_{\mathrm{AC}} \sin \alpha=0$ so $T_{\mathrm{AC}}=-340$ (Thrust of) 340 N in AC $\mathrm{B} \leftarrow T_{\mathrm{AB}}+T_{\mathrm{BC}} \sin \alpha-340 \sin \alpha=0$ so $T_{\mathrm{AB}}=320$ (Tension of) 320 N in AB Tension/ Thrust all consistent with working	M1 A1 F1 M1 A1 F1	Equilibrium at a pin-joint Method for $T_{\text {AB }}$ [Award a max of $4 / 6$ if working inconsistent with diagram]	6
		19		

4763 Mechanics 3

1 (i)	$\begin{aligned} & {[\text { Force }]=\mathrm{MLT}^{-2}} \\ & {[\text { Density }]=\mathrm{ML}^{-3}} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	
(ii)	$\begin{aligned} {[\eta] } & =\frac{[F][d]}{[A]\left[v_{2}-v_{1}\right]}=\frac{\left(\mathrm{MLT}^{-2}\right)(\mathrm{L})}{\left(\mathrm{L}^{2}\right)\left(\mathrm{LT}^{-1}\right)} \\ & =\mathrm{ML}^{-1} \mathrm{~T}^{-1} \end{aligned}$	B1 M1 A1 3	for $[A]=\mathrm{L}^{2}$ and $[v]=\mathrm{LT}^{-1}$ Obtaining the dimensions of η
(iii)	$\left[\frac{2 a^{2} \rho g}{9 \eta}\right]=\frac{\mathrm{L}^{2}\left(\mathrm{ML}^{-3}\right)\left(\mathrm{LT}^{-2}\right)}{\mathrm{ML}^{-1} \mathrm{~T}^{-1}}=\mathrm{LT}^{-1}$ which is same as the dimensions of v	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { E1 } & \mathbf{3} \end{array}$	For $[g]=\mathrm{LT}^{-2}$ Simplifying dimensions of RHS Correctly shown
(iv)	$\left(\mathrm{ML}^{-3}\right) \mathrm{L}^{\alpha}\left(\mathrm{LT}^{-1}\right)^{\beta}\left(\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right)^{\gamma}$ is dimensionless $\begin{aligned} & \gamma=-1 \\ & -\beta-\gamma=0 \\ & -3+\alpha+\beta-\gamma=0 \\ & \alpha=1, \quad \beta=1 \end{aligned}$	B1 cao M1 M1A1 A1 cao	
(v)	$\begin{aligned} R=\frac{\rho w v}{\eta} & =\frac{0.4 \times 25 \times 150}{1.6 \times 10^{-5}} \quad\left(=9.375 \times 10^{7}\right) \\ & =\frac{1.3 \times 5 v}{1.8 \times 10^{-5}} \end{aligned}$ Required velocity is $260 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 cao 3	Evaluating R Equation for v

$\begin{aligned} & 2 \\ & \text { (a)(i) } \end{aligned}$	$\begin{aligned} & T \cos \alpha=T \cos \beta+0.27 \times 9.8 \\ & \sin \alpha=\frac{1.2}{2.0}=\frac{3}{5}, \cos \alpha=\frac{4}{5} \quad\left(\alpha=36.87^{\circ}\right) \\ & \sin \beta=\frac{1.2}{1.3}=\frac{12}{13}, \cos \beta=\frac{5}{13} \quad\left(\beta=67.38^{\circ}\right) \\ & \frac{27}{65} T=2.646 \end{aligned}$ Tension is 6.37 N	M1 A1 B1 M1 E1	Resolving vertically (weight and at least one resolved tension) Allow T_{1} and T_{2} For $\cos \alpha$ and $\cos \beta$ [or α and β] Obtaining numerical equation for T e.g. $T(\cos 36.9-\cos 67.4)=0.27 \times 9.8$ (Condone 6.36 to 6.38)
(ii)	$\begin{aligned} T \sin \alpha+T \sin \beta & =0.27 \times \frac{v^{2}}{1.2} \\ 6.37 \times \frac{3}{5}+6.37 \times \frac{12}{13} & =0.27 \times \frac{v^{2}}{1.2} \\ v^{2} & =43.12 \end{aligned}$ Speed is $6.57 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 M1 A1 4	Using $v^{2} / 1.2$ Allow T_{1} and T_{2} Obtaining numerical equation for v^{2}
(b)(i)	$\begin{aligned} 0.2 \times 9.8 & =0.2 \times \frac{u^{2}}{1.25} \\ u^{2} & =9.8 \times 1.25=12.25 \end{aligned}$ Speed is $3.5 \mathrm{~m} \mathrm{~s}^{-1}$	M1 E1 2	Using acceleration $u^{2} / 1.25$
(ii)	$\begin{aligned} \frac{1}{2} m\left(v^{2}-3.5^{2}\right) & =m g(1.25-1.25 \cos 60) \\ v^{2} & =24.5 \end{aligned}$ Radial component is $\frac{24.5}{1.25}$ $=19.6 \mathrm{~m} \mathrm{~s}^{-2}$ Tangential component is $g \sin 60$ $=8.49 \mathrm{~m} \mathrm{~s}^{-2}$	M1 A1 M1 A1 M1 A1 6	Using conservation of energy With numerical value obtained by using energy (M0 if mass, or another term, included) For sight of $(m) g \sin 60^{\circ}$ with no other terms
(iii)	$T+0.2 \times 9.8 \cos 60=0.2 \times 19.6$ Tension is 2.94 N	M1 A1 cao 2	Radial equation (3 terms) This M1 can be awarded in (ii)

(vi)	e.g. Rope is light Rock is a particle No air resistance / friction / external forces Rope obeys Hooke's law / Perfectly elastic / Within elastic limit / No energy loss in rope	B1B1B1	Three modelling assumptions

4 (a)	$\begin{aligned} & \begin{aligned} & \int \frac{1}{2} y^{2} \mathrm{~d} x=\int_{-a}^{a} \frac{1}{2}\left(a^{2}-x^{2}\right) \mathrm{d} x \\ &=\left[\frac{1}{2}\left(a^{2} x-\frac{1}{3} x^{3}\right)\right]_{-a}^{a} \\ &=\frac{2}{3} a^{3} \\ & \begin{aligned} \bar{y} & =\frac{\frac{2}{3} a^{3}}{\frac{1}{2} \pi a^{2}} \end{aligned} \\ &= \frac{4 a}{3 \pi} \end{aligned} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { M1 } & \\ \text { E1 } & \\ \hline \end{array}$	For integral of $\left(a^{2}-x^{2}\right)$ Dependent on previous M1
(b)(i)	$\begin{aligned} & V=\int \pi y^{2} \mathrm{~d} x=\int_{0}^{h} \pi(m x)^{2} \mathrm{~d} x \\ &=\left[\frac{1}{3} \pi m^{2} x^{3}\right]_{0}^{h}=\frac{1}{3} \pi m^{2} h^{3} \\ & \int \pi x y^{2} \mathrm{~d} x=\int_{0}^{h} \pi x(m x)^{2} \mathrm{~d} x \\ &=\left[\frac{1}{4} \pi m^{2} x^{4}\right]_{0}^{h}=\frac{1}{4} \pi m^{2} h^{4} \\ & \bar{x}=\frac{\frac{1}{4} \pi m^{2} h^{4}}{\frac{1}{3} \pi m^{2} h^{3}} \\ &=\frac{3}{4} h \end{aligned}$	M1 A1 M1 A1 M1 E1	π may be omitted throughout For integral of x^{2} or use of $V=\frac{1}{3} \pi r^{2} h$ and $r=m h$ For integral of x^{3} Dependent on M1 for integral of x^{3}
(ii)	$\begin{aligned} & m_{1}=\frac{1}{3} \pi \times 0.7^{2} \times 2.4 \rho=\frac{1}{3} \pi \rho \times 1.176 \\ & \mathrm{VG}_{1}=1.8 \\ & m_{2}=\frac{1}{3} \pi \times 0.4^{2} \times 1.1 \rho=\frac{1}{3} \pi \rho \times 0.176 \\ & \mathrm{VG}_{2}=1.3+\frac{3}{4} \times 1.1=2.125 \\ & \left(m_{1}-m_{2}\right)(\mathrm{VG})+m_{2}\left(\mathrm{VG}_{2}\right)=m_{1}\left(\mathrm{VG}_{1}\right) \\ & \quad(\mathrm{VG})+0.176 \times 2.125=1.176 \times 1.8 \end{aligned}$ Distance (VG) is 1.74 m	$\begin{array}{ll}\text { B1 } & \\ \text { B1 } \\ \text { M1 } & \\ \text { F1 } & \\ \text { A1 } & \\ & 5\end{array}$	For m_{1} and m_{2} (or volumes) or $\frac{1}{4} \times 1.1$ from base Attempt formula for composite body
(iii)	VQG is a right-angle $\begin{aligned} \mathrm{VQ} & =\mathrm{VG} \cos \theta \text { where } \tan \theta=\frac{0.7}{2.4} \quad\left(\theta=16.26^{\circ}\right) \\ \mathrm{VQ} & =1.7428 \times \frac{24}{25} \\ & =1.67 \mathrm{~m} \end{aligned}$	M1 M1 A1 3	ft is $\mathrm{VG} \times 0.96$

4766 Statistics 1

Section A

Q1	(With $\sum f x=7500$ and $\sum f=10000$ then arriving at the
(i)	

(i) $£ 0.75$ scores (B1, B1)
(ii) 75 p scores (B1, B1)
(iii) 0.75 p scores ($\mathrm{B} 1, \mathrm{~B} 0)$ (incorrect units)
(iv) $£ 75$ scores (B1, B0) (incorrect units)

After B0, B0 then sight of $\frac{\mathbf{7 5 0 0}}{\mathbf{1 0 0 0 0}}$ scores SC1. SC1 or an answer in the range $£ 0.74-£ 0.76$ or 74 p -76 p (both inclusive) scores SC 1 (units essential to gain this mark)

Standard Deviation: (CARE NEEDED here with close proximity of answers)

- $50.2(0)$ using divisor 9999 scores B2 (50.20148921)
- 50.198 (= 50.2) using divisor 10000 scores B1(rmsd)
- If divisor is not shown (or calc used) and only an answer of 50.2 (i.e. not coming from 50.198) is seen then award B2 on b.o.d. (default)

After B0 scored then an attempt at S_{xx} as evident by either

or
$\mathrm{S}_{\mathrm{xx}}=(5000+200000+25000000)-10000(0.75)^{2}$
scores (M1) or M1ft 'their 7500^{2} ' or 'their $0.75^{\mathbf{2}}$,
NB The structure must be correct in both above cases with a max of 1 slip only after applying the f.t.

B1 for numerical mean (0.75 or 75 seen)
B1dep for correct units attached

B2 correct s.d.
(B1) correct rmsd
(B2) default
$\sum f x^{2}=25,205,000$
Beware $\sum x^{2}=25,010,100$
After B0 scored then
(M1) or M1f.t. for
4 attempt at $S_{x x}$

NB full marks for correct results from recommended method which is use of calculator functions

(ii)	P(Two $£ 10$ or two $£ 100$) $\begin{aligned} & =\frac{50}{10000} \times \frac{49}{9999}+\frac{20}{10000} \times \frac{19}{9999} \\ & =0.0000245+0.0000038 \quad=(0.00002450245+0.00000380038) \\ & =0.000028(3) \text { o.e. } \end{aligned}$ After M0, M0 then $\frac{50}{\mathbf{1 0 0 0 0}} \times \frac{50}{\mathbf{1 0 0 0 0}}+\frac{20}{\mathbf{1 0 0 0 0}} \times \frac{\mathbf{2 0}}{\mathbf{1 0 0 0 0}}$ o.e. Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9×10^{-5} o.e.) $\text { Similarly, } \frac{50}{10000} \times \frac{49}{10000}+\frac{20}{10000} \times \frac{19}{10000} \text { scores SC1 }$	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case \#1) (SC1 case \#2) CARE answer is also 2.83×10^{-5}	3
		TOTAL	7
$\begin{aligned} & \hline \text { Q2 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Either } \mathrm{P}(\text { all correct })=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1}=\frac{1}{720} \\ & \text { or } \mathrm{P}(\text { all correct })=\frac{1}{6!}=\frac{1}{720}=0.00139 \end{aligned}$	M1 for 6! Or 720 (sioc) or product of fractions A1 CAO (accept 0.0014)	2
(ii)	Either $\mathrm{P}($ picks $\mathrm{T}, \mathrm{O}, \mathrm{M})=\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}=\frac{1}{20}$ or $\mathrm{P}($ picks $\mathrm{T}, \mathrm{O}, \mathrm{M})=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3!=\frac{1}{20}$ or $\mathrm{P}($ picks $T, \mathrm{O}, \mathrm{M})=\frac{1}{\binom{6}{3}}=\frac{1}{20}$	M1 for denominators M1 for numerators or 3! A1 CAO Or M1 for $\binom{6}{3}$ or $20 \underline{\text { sioc }}$ M1 for $1 /\binom{6}{3}$ A1 CAO	3
		TOTAL	5
Q3 (i)	$p=0.55$	B1 cao	1
(ii)	$\begin{aligned} & \mathrm{E}(\mathrm{X})= \\ & 0 \times 0.55+1 \times 0.1+2 \times 0.05+3 \times 0.05+4 \times 0.25=1.35 \\ & \\ & \begin{aligned} \mathrm{E}\left(\mathrm{X}^{2}\right) & =0 \times 0.55+1 \times 0.1+4 \times 0.05+9 \times 0.05+16 \times 0.25 \\ & =0+0.1+0.2+0.45+4 \\ & =(4.75) \end{aligned} \\ & \begin{aligned} \operatorname{Var}(\mathrm{X}) & =\text { 'their' } 4.75-1.35^{2}=2.9275 \mathrm{awfw}(2.9275-2.93) \end{aligned} \end{aligned}$	M1 for $\Sigma r p$ (at least 3 non zero terms correct) A1 CAO(no ' n ' or ' $\mathrm{n}-1$ ' divisors) M1 for $\Sigma r^{2} p$ (at least 3 non zero terms correct) M1dep for - their $E(X)^{2}$ provided $\operatorname{Var}(\mathrm{X})>0$ A1 cao (no ' n ' or ' n -1' divisors)	5
(iii)	$\mathrm{P}($ At least 2 both times $)=(0.05+0.05+0.25)^{2}=0.1225$ o.e.	```M1 for \((0.05+0.05+0.25)^{2}\) or \(0.35^{2}\) seen A1cao: awfw (0.1225 - 0.123) or 49/400```	2
		TOTAL	8

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Q4 } \\
\& \text { (i) }
\end{aligned}
\] \& \begin{tabular}{l}
\[
X \sim \mathrm{~B}(50,0.03)
\] \\
(A) \(\quad \mathrm{P}(\boldsymbol{X}=1)=\binom{50}{1} \times 0.03 \times 0.97^{49}=0.3372\)
\[
\begin{aligned}
\& \text { (B) } \quad \mathrm{P}(\boldsymbol{X}=0)=0.97^{50}=0.2181 \\
\& \boldsymbol{P}(\boldsymbol{X}>1)=1-0.2181-0.3372=0.4447
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \(0.03 \times 0.97^{49}\) or \(0.0067(4) \ldots\). \\
M1 \(\binom{50}{1} \times p q^{49}(\mathrm{p}+\mathrm{q}\) \\
=1) \\
A1 CAO \\
(awfw 0. 337 to 0.3372) or \\
0.34 (2s.f.) or 0.34(2d.p.) but not just 0.34 \\
B1 for \(0.97^{50}\) or 0.2181 (awfw 0.218 to 0.2181) M1 for \(1-(\) 'their' \(\mathrm{p}(\mathrm{X}=0)+\) 'their' \(\mathrm{p}(\mathrm{X}=1)\)) must have both probabilities A1 CAO (awfw 0.4447 to 0.445)
\end{tabular} \& 3

3

\hline (ii) \& Expected number $=n p=240 \times 0.3372=80.88-80.93=(81)$ Condone $240 \times 0.34=81.6=(82)$ but for M1 Alf.t. \& $$
\begin{aligned}
& \text { M1 for } 240 \times \operatorname{prob}(\mathrm{A}) \\
& \text { A1FT }
\end{aligned}
$$ \& 2

\hline \& \& TOTAL \& 8

\hline \[
$$
\begin{aligned}
& \hline \text { Q5 } \\
& \text { (i) }
\end{aligned}
$$

\] \& | $\mathrm{P}(\mathrm{R}) \times \mathrm{P}(L)=0.36 \times 0.25=0.09 \neq \mathrm{P}(R \cap L)$ |
| :--- |
| Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 $\neq 0.2$ or $\neq \mathrm{p}(\mathrm{R} \cap \mathrm{L})$ so not independent) | \& M1 for 0.36×0.25 or 0.09 seen A1 (numerical justification needed) \& 2

\hline (ii) \& \& | G1 for two overlapping circles labelled |
| :--- |
| G1 for 0.2 and either 0.16 or 0.05 in the correct places |
| G1 for all 4 correct probs in the correct places (including the 0.59) |
| The last two G marks are independent of the labels | \& 3

\hline (iii) \& | $P(L \mid R)=\frac{P(L \cap R)}{P(R)}=\frac{0.2}{0.36}=\frac{5}{9}=0.556(\text { awrt } 0.56)$ |
| :--- |
| This is the probability that Anna is late given that it is raining. (must be in context) |
| Condone 'if' or 'when' or 'on a rainy day' for 'given that' but not the words 'and' or 'because' or 'due to' | \& | M1 for 0.2/0.36 o.e. |
| :--- |
| A1 cao |
| E1 (indep of M1A1) Order/structure must be correct i.e. no reverse statement | \& 3

\hline \& \& TOTAL \& 8

\hline
\end{tabular}

Section B

$\begin{aligned} & \hline \text { Q6 } \\ & \text { (i) } \end{aligned}$	Median $=4.06-4.075$ (inclusive) $\begin{aligned} & \mathrm{Q}_{1}=3.8 \\ & \mathrm{Q}_{3}=4.3 \end{aligned}$ Inter-quartile range $=4.3-3.8=0.5$	B1cao B 1 for Q_{1} (cao) B 1 for Q_{3} (cao) B1 ft for IQR must be using t-values not locations to earn this mark	4
(ii)	Lower limit 'their 3.8 ' $-1.5 \times$ 'their 0.5 ' $=(3.05)$ Upper limit 'their $4.3^{\prime}+1.5 \times$ 'their 0.5 ' $=(5.05)$ Very few if any temperatures below 3.05 (but not zero) None above 5.05 'So few, if any outliers' scores SC1	B1ft: must have -1.5 B1 ft: must have +1.5 E1ft dep on -1.5 and Q_{1} E1ft dep on +1.5 and Q_{3} Again, must be using tvalues NOT locations to earn these 4 marks	4
(iii)	Valid argument such as 'Probably not, because there is nothing to suggest that they are not genuine data items; (they do not appear to form a separate pool of data.') Accept: exclude outlier - 'measuring equipment was wrong' or 'there was a power cut' or ref to hot / cold day [Allow suitable valid alternative arguments]	E1	1
(iv)	Missing frequencies 25, 125, 50	B1, B1, B1 (all cao)	
(v)	$\begin{aligned} \text { Mean } & =(3.2 \times 25+3.6 \times 125+4.0 \times 243+4.4 \times 157+4.8 \times 50) / 600 \\ & =2432.8 / 600=4.05(47) \end{aligned}$	M1 for at least 4 midpoints correct and being used in attempt to find $\sum f t$ A1cao: awfw (4.05 4.055) ISW or rounding	3 2
(vi)	$\begin{aligned} & \text { New mean }=1.8 \times \text { 'their } 4.05(47) \text { ' }+32=39.29(84) \text { to } 39.3 \\ & \text { New } \mathrm{s}=1.8 \times 0.379 \\ & \quad=0.682 \end{aligned}$	B1 FT M1 for 1.8×0.379 A1 CAO awfw (0.68 - 0.6822)	3
		TOTAL	17

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Q7 } \\
\text { (i) }
\end{array} \\
\hline
\end{array}
\] \& \begin{tabular}{l}
\[
X \sim \mathrm{~B}(10,0.8)
\] \\
(A) Either \(\mathrm{P}(\boldsymbol{X}=8)=\binom{10}{8} \times 0.8^{8} \times 0.2^{2}=0.3020\) (awrt) \\
or
\[
\begin{aligned}
\mathrm{P}(X=8) \& =\mathrm{P}(X \leq 8)-\mathrm{P}(X \leq 7) \\
\& =0.6242-0.3222=0.3020
\end{aligned}
\] \\
(B) Either
\[
\begin{aligned}
\mathrm{P}(X \geq 8) \& =1-\mathrm{P}(X \leq 7) \\
\& =1-0.3222=0.6778
\end{aligned}
\] \\
or
\[
\begin{aligned}
\mathrm{P}(X \geq 8) \& =\mathrm{P}(X=8)+\mathrm{P}(X=9)+\mathrm{P}(X=10) \\
\& =0.3020+0.2684+0.1074=0.6778
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \(0.8^{8} \times 0.2^{2}\) or \(0.00671 \ldots\)
\[
\text { M1 }\binom{10}{8} \times p^{8} q^{2} ;(\mathrm{p}+\mathrm{q}
\]
\[
=1)
\]
\[
\text { Or } 45 \times p^{8} q^{2} ;(p+q=1)
\] \\
A1 CAO (0.302) not 0.3 \\
OR: M2 for 0.6242 0.3222 A1 CAO \\
M1 for \(1-0.3222\) (s.o.i.) \\
A1 CAO awfw 0.677-0.678 or \\
M1 for sum of 'their' \(\mathrm{p}(\mathrm{X}=8)\) plus correct expressions for \(\mathrm{p}(\mathrm{x}=9)\) and \(p(X=10)\) \\
A1 CAO awfw 0.677-0.678
\end{tabular} \& 3

2

\hline (ii) \& | Let $X \sim \mathrm{~B}(18, p)$ |
| :--- |
| Let $p=$ probability of delivery (within 24 hours) (for population) $\begin{aligned} & \mathrm{H}_{0}: p=0.8 \\ & \mathrm{H}_{1}: p<0.8 \end{aligned}$ $\mathrm{P}(X \leq 12)=0.1329>5 \% \quad \text { ref: }[\mathrm{pp}=0.0816]$ |
| So not enough evidence to reject H_{0} |
| Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours |
| Note: use of critical region method scores |
| M1 for region $\{0,1,2, \ldots, 9,10\}$ |
| M1dep for 12 does not lie in critical region then A1dep E1dep as per scheme | \& | B1 for definition of p |
| :--- |
| B1 for H_{0} |
| B1 for H_{1} |
| M1 for probability |
| 0.1329 |
| M1dep strictly for comparison of 0.1329 with 5% (seen or clearly implied) |
| A1dep on both M's |
| E1dep on M1,M1,A1 for conclusion in context | \& 7

\hline
\end{tabular}

(iii)	Let $X \sim \mathrm{~B}(18,0.8)$ $\mathrm{H}_{1}: p \neq 0.8$ LOWER TAIL $\begin{aligned} & \mathrm{P}(X \leq 10)=0.0163<2.5 \% \\ & \mathrm{P}(X \leq 11)=0.0513>2.5 \% \end{aligned}$ UPPER TAIL $\begin{aligned} & \mathrm{P}(X \geq 17)=1-\mathrm{P}(X \leq 16)=1-0.9009=0.0991>2.5 \% \\ & \mathrm{P}(X \geq 18)=1-\mathrm{P}(X \leq 17)=1-0.9820=0.0180<2.5 \% \end{aligned}$ So critical region is $\{\underline{0}, 1,2,3,4,5,6,7,8,9,10,18\}$ o.e. Condone $X \leq 10$ and $X \geq 18$ or $X=18$ but not $p(X \leq 10)$ and $p(X \geq 18)$ Correct CR without supportive working scores SC2 max after the $1^{\text {st }} \mathrm{B} 1$ (SC 1 for each fully correct tail of CR)	B1 for H_{1} B1 for 0.0163 or 0.0513 seen M1dep for either correct comparison with 2.5\% (not 5\%) (seen or clearly implied) A1dep for correct lower tail CR (must have zero) B1 for 0.0991 or 0.0180 seen M1dep for either correct comparison with $\mathbf{2 . 5 \%}$ (not 5\%) (seen or clearly implied) A1dep for correct upper tail CR	7
		TOTAL	19

4767 Statistics 2

Question 1

(iv)	(A) \quadFor $t=80$, predicted speed $=-0.011 \times 80+2.73=1.85$	M1 A1 FT provided $\mathrm{b}<0$ The relationship relates to adults, but a ten year old will not be fully grown so may walk more slowly.	E1 extrapolation o.e. E1 sensible contextual comment	$\mathbf{4}$
		TOTAL	$\mathbf{2 0}$	

Question 2

(i)	Binomial(5000,0.0001)	B1 for binomial B1 dep, for parameters	2
(ii)	n is large and p is small $\lambda=5000 \times 0.0001=0.5$	B1, B1 (Allow appropriate numerical ranges) B1	3
(iii)	$\mathrm{P}(X \geq 1)=1-\mathrm{e} \frac{0.5^{0}}{0!}=1-0.6065=0.3935$ $\text { or from tables }=1-0.6065=0.3935$	M1 for correct calculation or correct use of tables A1	2
(iv)	$\begin{aligned} & \mathrm{P}(9 \text { of } 20 \text { contain at least one }) \\ & =\binom{20}{9} \times 0.3935^{9} \times 0.6065^{11} \\ & =0.1552 \end{aligned}$	M1 for coefficient M1 for $p^{9} \times(1-p)^{11}, p$ from part (iii) A1	3
(v)	Expected number $=20 \times 0.3935=7.87$	M1 A1 FT	2
(vi)	$\begin{aligned} & \text { Mean }=\frac{\Sigma x f}{n}=\frac{7+4}{20}=\frac{11}{20}=0.55 \\ & \text { Variance }=\frac{1}{n-1}\left(\Sigma f x^{2}-n \bar{x}^{2}\right) \\ & \quad=\frac{1}{19}\left(15-20 \times 0.55^{2}\right)=0.471 \end{aligned}$	B1 for mean M1 for calculation A1 CAO	3
(vii)	Yes, since the mean is close to the variance, and also as the expected frequency for 'at least one', i.e. 7.87, is close to the observed frequency of 9 .	B1 E1 for sensible comparison B1 for observed frequency $=7+2=9$	3
		TOTAL	18

Question 3

\begin{tabular}{|c|c|c|c|}
\hline (i) \& \begin{tabular}{l}
(A)
\[
\begin{aligned}
\& \mathrm{P}(X<120)=\mathrm{P}\left(Z<\frac{120-115.3}{21.9}\right) \\
\& =\mathrm{P}(Z<0.2146) \\
\& =\Phi(0.2146)=0.5849
\end{aligned}
\]
\[
\begin{array}{|l}
\text { (B) } \quad \mathrm{P}(100<X<110)= \\
\mathrm{P}\left(\frac{100-115.3}{21.9}<Z<\frac{110-115.3}{21.9}\right) \\
=\mathrm{P}(-0.6986<Z<-0.2420) \\
= \\
=(0.6986)-\Phi(0.2420) \\
=0.7577-0.5956 \\
\quad=0.1621
\end{array}
\] \\
(C) From tables \(\Phi^{-1}(0.1)=-1.282\)
\[
\begin{aligned}
\& \frac{k-115.3}{21.9}=-1.282 \\
\& k=115.3-1.282 \times 21.9=87.22
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 for standardizing A1 for \(z=0.2146\) \\
A1 CAO (min 3 sf, to include use of difference column) \\
M1 for standardizing both \(100 \& 110\) \\
M1 for correct structure in calc \(^{n}\) \\
A1 CAO \\
B1 for \(\pm 1.282\) seen M1 for equation in \(k\) and negative \(z\)-value \\
A1 CAO
\end{tabular} \& 3

3
3

\hline (ii) \& From tables,

\[
$$
\begin{aligned}
& \Phi^{-1}(0.70)=0.5244, \Phi^{-1}(0.15)=-1.036 \\
& 180=\mu+0.5244 \sigma \\
& 140=\mu-1.036 \sigma \\
& 40=1.5604 \sigma \\
& \sigma=25.63, \mu=166.55
\end{aligned}
$$

\] \& | B1 for 0.5244 or ± 1.036 seen |
| :--- |
| M1 for at least one equation in μ and σ and Φ^{-1} value |
| M1 dep for attempt to solve two equations A1 CAO for both | \& 4

\hline (iii) \& \[
$$
\begin{aligned}
& \Phi^{-1}(0.975)=1.96 \\
& a=166.55-1.96 \times 25.63=116.3 \\
& b=166.55+1.96 \times 25.63=216.8
\end{aligned}
$$

\] \& | B1 for ± 1.96 seen M1 for either equation A1 |
| :--- |
| A1 |
| [Allow other correct intervals] | \& 4

\hline \& \& TOTAL \& 17

\hline
\end{tabular}

Question 4

4768 Statistics 3

Q1 (a)	$\mathrm{f}(x)=\lambda x^{c}, 0 \leq x \leq 1, \lambda>1$			
(i)	$\begin{aligned} & \int_{0}^{1} \lambda x^{c} \mathrm{~d} x=1 \\ & \therefore\left[\frac{\lambda x^{c+1}}{c+1}\right]_{0}^{1}=1 \\ & \therefore \frac{\lambda}{c+1}=1 \quad \therefore c=\lambda-1 \end{aligned}$	M1 M1 A1	Correct integral, with limits (possibly appearing later), set equal to 1 . Integration correct and limits used. c.a.o.	3
(ii)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} \lambda x^{\lambda} \mathrm{d} x \\ & =\left[\frac{\lambda x^{\lambda+1}}{\lambda+1}\right]_{0}^{1}=\frac{\lambda}{\lambda+1} . \end{aligned}$	M1 M1 A1	Correct form of integral for $\mathrm{E}(X)$. Allow c's expression for c. Integration correct and limits used. ft c 's c.	3
(iii)	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=\int_{0}^{1} \lambda x^{\lambda+1} \mathrm{~d} x \\ & \quad=\left[\frac{\lambda x^{\lambda+2}}{\lambda+2}\right]_{0}^{1}=\frac{\lambda}{\lambda+2} . \\ & \operatorname{Var}(X)=\frac{\lambda}{\lambda+2}-\left(\frac{\lambda}{\lambda+1}\right)^{2}=\frac{\lambda(\lambda+1)^{2}-\lambda^{2}(\lambda+2)}{(\lambda+2)(\lambda+1)^{2}} \\ & =\frac{\lambda^{3}+2 \lambda^{2}+\lambda-\lambda^{3}-2 \lambda^{2}}{(\lambda+2)(\lambda+1)^{2}}=\frac{\lambda}{(\lambda+2)(\lambda+1)^{2}} . \end{aligned}$	M1 A1 M1 A1	Correct form of integral for $\mathrm{E}\left(X^{2}\right)$. Allow c's expression for c. Use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$. Allow c's $\mathrm{E}\left(X^{2}\right)$ and $\mathrm{E}(X)$. Algebra shown convincingly. Beware printed answer.	4
(b)	Times -32 Rank of [diff $]$ 40 8 4 20 -12 7 18 -14 8 11 -21 12 47 15 9 36 4 2 38 6 3 35 3 1 22 -10 5 14 -18 10 12 -20 11 21 -11 6$W_{+}=1+2+3+4+9=19$ Refer to Wilcoxon single sample tables for $n=12$. Lower (or upper if 59 used) 5% tail is 17 (or 61 if 59 used). Result is not significant. Seems that there is no evidence that Godfrey's times have decreased.	M1 M1 A1 B1 M1 A1 A1 A1	$\mathrm{H}_{0}: m=32, \quad \mathrm{H}_{1}: m<32$, where m is the population median time. for subtracting 32 . for ranks. ft if ranks wrong. $\begin{aligned} & \text { (or } W_{-}=5+6+7+8+10+11+12 \\ & =59) \end{aligned}$ No ft from here if wrong. i.e. a 1-tail test. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	8
				18

Q2	$\begin{aligned} & V_{G} \sim \mathrm{~N}\left(56.5,2.9^{2}\right) \\ & V_{W} \sim \mathrm{~N}\left(38.4,1.1^{2}\right) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} & \mathrm{P}\left(V_{G}<60\right)=\mathrm{P}\left(Z<\frac{60-56.5}{2.9}=1.2069\right) \\ & =0.8862 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{aligned} & V_{T} \sim \mathrm{~N}(56.5+38.4=94.9, \\ & \mathrm{P}(\text { this }>100)=\mathrm{P}\left(Z>\frac{100-94.9}{3.1016}=1.6443\right) \\ & =1-0.9499=0.0501 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (=3.1016). c.a.o.	3
(iii)	$\begin{aligned} & W_{T} \sim \mathrm{~N}(3.1 \times 56.5+0.8 \times 38.4=205.87, \\ & \left.\quad 3.1^{2} \times 2.9^{2}+0.8^{2} \times 1.1^{2}=81.5945\right) \\ & \mathrm{P}(200<\text { this }<220) \\ & =\mathrm{P}\left(\frac{200-205.87}{9.0330}<Z<\frac{220-205.87}{9.0330}\right) \\ & =\mathrm{P}(-0.6498<Z<1.5643) \\ & =0.9411-(1-0.7422)=0.6833 \end{aligned}$	M1 A1 M1 A1 M1 A1	Use of "mass $=$ density \times volume" Mean. Variance. Accept sd (=9.0330). Formulation of requirement. c.a.o.	6
(iv)	Given $\quad \bar{x}=205.6 \quad s_{n-1}=8.51$ $\mathrm{H}_{0}: \mu=200, \mathrm{H}_{1}: \mu>200$ Test statistic is $\frac{205.6-200}{\frac{8.51}{\sqrt{ } 10}}$ $=2.081$ Refer to t_{9}. Single-tailed 5\% point is 1.833 . Significant. Seems that the required reduction of the mean weight has not been achieved.	M1	Allow alternative: $200+(c$'s 1.833 $)$ $\times \frac{8.51}{\sqrt{10}}(=204.933)$ for subsequent comparison with \bar{x}. $\left(\text { Or } \bar{x}-(\text { c's } 1.833) \times \frac{8.51}{\sqrt{10}}\right.$ (=200.667) for comparison with 200.) c.a.o. but ft from here in any case if wrong. Use of $200-\bar{x}$ scores M1A0, but ft . No ft from here if wrong. $\mathrm{P}(t>2.081)=0.0336$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	6
				18

Q3				
(i)	In this situation a paired test is appropriate because there are clearly differences between specimens which the pairing eliminates.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		2
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{D}=0 \\ & \mathrm{H}_{1}: \mu_{D}>0 \end{aligned}$ Where μ_{D} is the (population) mean reduction in hormone concentration. Must assume - Sample is random - Normality of differences	B1 B1 B1 B1	Both. Accept alternatives e.g. $\mu_{D}<0$ for H_{1}, or $\mu_{A}-\mu_{B}$ etc provided adequately defined. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean.	4
(iii)	MUST be PAIRED COMPARISON t test. Differences (reductions) (before - after) are $\begin{aligned} & -0.75 \\ & 2.71 \\ & 2.59 \\ & 6.07 \\ & \bar{x}=1.65 \quad s_{n-1}=2.100(3) \quad\left(s_{n-1}^{2}=4.4112\right) \end{aligned}$ Test statistic is $\frac{1.65-0}{\frac{2.100}{\sqrt{ } 15}}$ $=3.043 .$ Refer to t_{14}. Single-tailed 1\% point is 2.624 . Significant. Seems mean concentration of hormone has fallen.	1.77 B1 M1 A1 M1 A1 A1 A1	Allow "after - before" if consistent with alternatives above. $\begin{array}{llllll}2.95 & 1.59 & 4.17 & 0.38 & 0.88 & 0.95\end{array}$ Do not allow $s_{\mathrm{n}}=2.0291\left(s_{n}{ }^{2}=\right.$ 4.1171) Allow c's \bar{x} and/or s_{n-1}. Allow alternative: $0+($ c's 2.624$) \times$ $\frac{2.100}{\sqrt{15}}(=1.423)$ for subsequent comparison with \bar{x}. (Or $\bar{x}-(c$'s 2.624$) \times \frac{2.100}{\sqrt{15}}$ ($=0.227$) for comparison with 0 .) c.a.o. but ft from here in any case if wrong. Use of $0-\bar{x}$ scores M1A0, but ft. No ft from here if wrong. $\mathrm{P}(t>3.043)=0.00438$. No ft from here if wrong. ft only c 's test statistic. ft only c 's test statistic.	7
(iv)	CI is $1.65 \pm$ $\begin{array}{r} k \times \frac{2.100}{\sqrt{15}} \quad=(0.4869,2.8131) \end{array}$ $\therefore k=2.145$ By reference to t_{14} tables this is a 95% CI.	M1 M1 A1 A1 A1	$\mathrm{ftc} \mathrm{c}^{\prime} \bar{x} \pm$. ft c 's $S_{n 1}$. A correct equation in k using either end of the interval or the width of the interval. Allow ft c's \bar{x} and $s_{n 1}$. c.a.o.	5
				18

Q4									
(i)	Sampling which selects from those that are (easily) available. Circumstances may mean that it is the only economically viable method available. Likely to be neither random nor representative.				E1 E1 E1				3
(ii)	$\begin{aligned} & p+p q+p q^{2}+p q^{3}+p q^{4}+p q^{5}+q^{6} \\ & =\frac{p\left(1-q^{6}\right)}{1-q}+q^{6}=\frac{p\left(1-q^{6}\right)}{p}+q^{6} \\ & =1-q^{6}+q^{6}=1 \end{aligned}$				M1	Use of GP formula to sum probabilities, or expand in terms of p or in terms of q. Algebra shown convincingly. Beware answer given.			2
(iii)	$\begin{aligned} X^{2} & =0.04+0.0033+0.6136+0.5706+1.2069 \\ & +0.7204+7.8206 \\ & =10.97(54) \end{aligned}$ (If e.g. only 2 dp used for expected f's then $\begin{aligned} X^{2} & =0.04+0.0033+0.6148+0.5690+1.2071 \\ & +0.7226+7.8225 \\ & =10.97(93)) \end{aligned}$ Refer to χ_{6}^{2}. Upper 10\% point is 10.64 . Significant. Suggests model with $p=0.25$ does not fit.				M1 Probabilities correct to 3 dp or M1 better. A1 $\times 100$ for expected frequencies. M1 All correct and sum to 100. A1 c.a.o. M1 Allow correct df $(=$ cells -1$)$ from wrongly grouped table and ft. Otherwise, no ft if wrong. P $\left(X^{2}>10.975\right)=0.0891$. A1 No ft from here if wrong. A1 only c's test statistic. A1 ft only c's test statistic..				9
(iv)	Now with $X^{2}=9.124$ Refer to χ_{5}^{2}. Upper 10% point is 9.236 . Not significant. (Suggests new model does fit.) Improvement to the model is due to estimation of p from the data.				M1 A1 A1 E1	Allow correct df (= cells -2) from wrongly grouped table and ft . Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>9.124\right)=0.1042$. No ft from here if wrong. Correct conclusion. Comment about the effect of estimated p, consistent with conclusion in part (iii).			4
									18

4771 Decision Mathematics 1

1.

2.
(i)

n	i	j	k
5	1	3	3
	2	2	8
	3	1	13
	4	0	16

$\mathrm{k}=16$
(ii) $\mathrm{f}(5)=125 / 6-35 / 6+1=90 / 6+1=16$
(Need to see 125 or $20.8 \dot{3}$ for A1)
(iii) cubic complexity

B1
B1
B1
B1
B1
substituting
A1
B1
3.

4.
(i) e.g. $\begin{array}{ll}00-47 \rightarrow 90 \\ & 48-79 \rightarrow 80 \\ & 80-95 \rightarrow 40 \\ & 96,97,98,99 \text { ignore }\end{array}$
(ii) smaller proportion rejected
(iii) e.g. $90,90,90,80$ 350
(iv) e.g. $90,80,90,80 \quad 340$

80, 90, 80, $80 \quad 330$
90, 40, 80, $90 \quad 300$
40, 90, 90, $90 \quad 310$
90, 90, 90, $90 \quad 360$
80, 80, 40, $90 \quad 290$
80, 80, 80, $90 \quad 330$
90, 80, 90, $90 \quad 350$
$90,40,40,80 \quad 250$
prob $($ load $>325)=0.6$
(v) e.g. family groups
5.

6.
(i) x_{i} represents the number of tonnes produced in month i

$$
\begin{aligned}
& x_{2} \leq x_{3} \\
& x_{1}+x_{2} \leq 12
\end{aligned}
$$

(ii) Substitute $\mathrm{x}_{3}=20-\mathrm{x}_{1}-\mathrm{x}_{2}$

$$
\begin{aligned}
& \mathrm{x}_{2} \leq \mathrm{x}_{3} \rightarrow x_{1}+2 x_{2} \leq 20 \\
& \text { Min 2000 } x_{1}+2200 x_{2}+2500 x_{3} \rightarrow \text { Max } 500 x_{1}+300 x_{2}
\end{aligned}
$$

(iii)

Production plan: 6 tonnes in month 1
6 tonnes in month 2
8 tonnes in month 3
Cost $=£ 45200$

4776 Numerical Methods

1(i)

x	y	1 st diff
-3	-16	
-1	-2	14
1	4	6
3	2	2

2nd diff
-8
[M1A1]
-8 2nd difference constant so quadratic fits
(ii) $\quad f(x)=-16+14(x+3) / 2-8(x+3)(x+1) / 8$
[M1A1A1A1]
$=-16+7 x+21-x^{2}-4 x-3$
$=2+3 x-x^{2}$
[A1]
[TOTAL 8]

2(i) Convincing algebra to demonstrate result
[M1A1]
(ii)(A) Direct subtraction:
0.0022
[B1]
(B)

Second value has many more significant figures ("more accurate") -- may be implied [M1A1]

Subtraction of nearly equal quantities loses precision

x	$f(x)$
0	1
0.8	0.819951
0.4	0.994867

$$
\begin{array}{rr}
\mathrm{T} 1= & 0.72798 \\
\mathrm{M} 1= & 0.795893 \\
\text { hence } \mathrm{S} 1= & 0.773256
\end{array}
$$

[M1]
$\begin{array}{ll}0.4 & 0.994867\end{array}$
[M1]
[M1] all values
(ii)

$$
\mathrm{T} 2=0.761937
$$

$$
\text { M2 }=0.784069 \quad \text { so } S 2=0.776692
$$

S2 will be much more accurate than S1 so 0.78 or 0.777 would be justified
condone signs here
[M1A1A1A1] but require correct
sign for k
[M1]
[A1]

5

r	0	1	2
X_{r}	3	3	3
X_{r}	2.99	2.9701	2.911194
X_{r}	3.01	3.0301	3.091206

Derivative is $2 \mathrm{x}-3$. Evaluates to 3 at $\mathrm{x}=3$
3 is clearly a root, but the iteration does not converge
Need $-1<\mathrm{g}^{\prime}(\mathrm{x})<1$ at root for convergence

6(i) Demonstrate change of sign ($\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{b})$ below) and hence existence of root

a	b	$f(a)$	$f(b)$	x	$m p e$	$f(x)$
0.2	0.3	-0.06429	0.021031	0.25	0.05	-0.01827
0.25	0.3	-0.01827	0.021031	0.275	0.025	0.002134
$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 7 5}$			$\mathbf{0 . 2 6 2 5}$	$\mathbf{0 . 0 1 2 5}$	-0.00787

[M1]
[M1]
[A1A1A1]
[subtotal 6]
(ii)

r	X_{r}	f_{r}
0	0.2	-0.06429
1	0.3	0.021031
2	0.275352	0.00241
3	0.272161	-0.0001

[M1A1]
[M1A1]
[A1]
accept 0.27 or 0.272 as secure
secant method much faster
[E1]
[subtotal 6]
(iii) $\quad \begin{array}{lllll} & X_{r} & e_{r} & e_{r+1} / e_{r}{ }^{2}\end{array}$

[subtotal 6]
[TOTAL 18]
$\begin{array}{llllll}\text { 7(i) } & \text { fwd diff: } & \mathrm{h} & 0.4 & 0.2 & 0.1\end{array}$
$\begin{array}{llll}\mathrm{f}^{\prime}(0) & 0.444758 & 0.473525 & 0.48711\end{array}$
[M1A1A1]
[B1]
[subtotal 4]
$\begin{array}{llllll}\text { (ii) } & \text { cent diff: } & \mathrm{h} & 0.4 & 0.2 & 0.1\end{array}$

$\mathrm{f}^{\prime}(0)$	0.491631	0.498315	0.50008

[M1A1A1]
[B1]
[subtotal 4]
(iii) $\quad\left(D_{2}-d\right)=0.5\left(D_{1}-d\right) \quad$ convincing algebra to $d=2 D_{2}-D_{1}$
[M1A1]
$\left(D_{2}-d\right)=0.25\left(D_{1}-d\right) \quad$ convincing algebra to $d=\left(4 D_{2}-D_{1}\right) / 3$
[M1A1A1]
[subtotal 5]
(iv) fwd diff: $\quad 2(0.48711)-0.473525=\quad 0.500695$
[M1A1]
cent diff: $\quad(4(0.50008)-0.498315) / 3=0.500668$
[M1A1]
0.5007 seems secure

Grade Thresholds

Advanced GCE (Subject) (Aggregation Code(s)) January 2009 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	A	B	C	D	E	U
All units	UMS	100	80	70	60	50	40	0
$\mathbf{4 7 5 1}$	Raw	72	61	53	45	37	30	0
$\mathbf{4 7 5 2}$	Raw	72	60	53	46	40	34	0
$\mathbf{4 7 5 3 / 0 1}$	Raw	72	61	54	47	40	32	0
$\mathbf{4 7 5 3 / 0 2}$	Raw	18	15	13	11	9	8	0
$\mathbf{4 7 5 4}$	Raw	90	75	66	57	49	41	0
$\mathbf{4 7 5 5}$	Raw	72	57	49	41	33	26	0
$\mathbf{4 7 5 6}$	Raw	72	53	47	42	37	32	0
$\mathbf{4 7 5 8 / 0 1}$	Raw	72	61	53	45	37	29	0
$\mathbf{4 7 5 8 / 0 2}$	Raw	18	15	13	11	9	8	0
$\mathbf{4 7 6 1}$	Raw	72	58	50	42	34	27	0
$\mathbf{4 7 6 2}$	Raw	72	57	49	41	33	26	0
$\mathbf{4 7 6 3}$	Raw	72	53	46	39	32	25	0
$\mathbf{4 7 6 6 / G 2 4 1}$	Raw	72	57	48	40	32	24	0
$\mathbf{4 7 6 7}$	Raw	72	60	52	45	38	31	0
$\mathbf{4 7 6 8}$	Raw	72	53	46	39	33	27	0
$\mathbf{4 7 7 1}$	Raw	72	57	51	45	39	33	0
$\mathbf{4 7 7 6 / 0 1}$	Raw	72	56	49	43	37	30	0
$\mathbf{4 7 7 6 / 0 2}$	Raw	18	14	12	10	8	7	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 9 5 - 3 8 9 8}$	300	240	210	180	150	120	0
$7895-7898$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 9 5}$	18.3	43.5	65.4	83.8	96.0	100.0	640
$\mathbf{3 8 9 6}$	39.2	58.8	78.4	86.3	96.1	100.0	94
$\mathbf{3 8 9 7}$	100.0	100.0	100.0	100.0	100.0	100.0	1
$\mathbf{7 8 9 5}$	22.2	57.6	81.7	93.0	98.1	100.0	186
$\mathbf{7 8 9 6}$	18.8	56.3	87.5	87.5	93.8	100.0	16

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

